On Taxonomy and Evaluation of Feature Selection-Based Learning Classifier System Ensemble Approaches for Data Mining Problems

被引:3
|
作者
Debie, Essam [1 ]
Shafi, Kamran [2 ]
Merrick, Kathryn [2 ]
Lokan, Chris [2 ]
机构
[1] Zagazig Univ, Fac Comp & Informat, Zagazig, Egypt
[2] UNSW Canberra, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
关键词
ensemble learning; feature selection; rough set theory; learning classifier systems; PREDICTION; XCS;
D O I
10.1111/coin.12099
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ensemble methods aim at combining multiple learning machines to improve the efficacy in a learning task in terms of prediction accuracy, scalability, and other measures. These methods have been applied to evolutionary machine learning techniques including learning classifier systems (LCSs). In this article, we first propose a conceptual framework that allows us to appropriately categorize ensemble-based methods for fair comparison and highlights the gaps in the corresponding literature. The framework is generic and consists of three sequential stages: a pre-gate stage concerned with data preparation; the member stage to account for the types of learning machines used to build the ensemble; and a post-gate stage concerned with the methods to combine ensemble output. A taxonomy of LCSs-based ensembles is then presented using this framework. The article then focuses on comparing LCS ensembles that use feature selection in the pre-gate stage. An evaluation methodology is proposed to systematically analyze the performance of these methods. Specifically, random feature sampling and rough set feature selection-based LCS ensemble methods are compared. Experimental results show that the rough set-based approach performs significantly better than the random subspace method in terms of classification accuracy in problems with high numbers of irrelevant features. The performance of the two approaches are comparable in problems with high numbers of redundant features.
引用
收藏
页码:554 / 578
页数:25
相关论文
共 50 条
  • [21] Cancer Classification Utilizing Voting Classifier with Ensemble Feature Selection Method and Transcriptomic Data
    Khatun, Rabea
    Akter, Maksuda
    Islam, Md. Manowarul
    Uddin, Md. Ashraf
    Talukder, Md. Alamin
    Kamruzzaman, Joarder
    Azad, Akm
    Paul, Bikash Kumar
    Almoyad, Muhammad Ali Abdulllah
    Aryal, Sunil
    Moni, Mohammad Ali
    GENES, 2023, 14 (09)
  • [22] A multi-objective feature selection and classifier ensemble technique for microarray data analysis
    Dash, Rasmita
    Misra, Bijan Bihari
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2018, 20 (02) : 123 - 160
  • [23] Feature Selection-Based Clustering on Micro-blogging Data
    Dutta, Soumi
    Ghatak, Sujata
    Das, Asit Kumar
    Gupta, Manan
    Dasgupta, Sayantika
    COMPUTATIONAL INTELLIGENCE IN DATA MINING, 2019, 711 : 885 - 895
  • [24] Detection for JPEG steganography based on evolutionary feature selection and classifier ensemble selection
    Ma, Xiaofeng
    Zhang, Yi
    Song, Xiangfeng
    Fan, Chao
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2017, 11 (11): : 5592 - 5609
  • [25] Efficient Twitter Sentiment Analysis System with Feature Selection and Classifier Ensemble
    Fouad, Mohammed M.
    Gharib, Tarek F.
    Mashat, Abdulfattah S.
    INTERNATIONAL CONFERENCE ON ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS (AMLTA2018), 2018, 723 : 516 - 527
  • [26] Ensemble Learning Based Feature Selection with an Application to Text Classification
    Onan, Aytug
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [27] A fast intrusion detection system based on swift wrapper feature selection and speedy ensemble classifier
    Zorarpaci, Ezgi
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [28] An Ensemble Classifier Based on Feature Selection Using Ant Colony Optimization
    Cao, Jianjun
    Lv, Guojun
    Shang, Yuling
    Weng, Nianfeng
    Chang, Chen
    Liu, Yi
    2018 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2018,
  • [29] Ensemble Meta Classifier with Sampling and Feature Selection for Data with Multiclass Imbalance Problem
    Sainin, Mohd Shamrie
    Alfred, Rayner
    Ahmad, Faudziah
    JOURNAL OF INFORMATION AND COMMUNICATION TECHNOLOGY-MALAYSIA, 2021, 20 (02): : 103 - 133
  • [30] Deep Learning Based Feature Selection and Ensemble Learning for Sintering State Recognition
    Xu, Xinran
    Zhou, Xiaojun
    Wozniak, Marcin
    SENSORS, 2023, 23 (22)