On Taxonomy and Evaluation of Feature Selection-Based Learning Classifier System Ensemble Approaches for Data Mining Problems

被引:3
|
作者
Debie, Essam [1 ]
Shafi, Kamran [2 ]
Merrick, Kathryn [2 ]
Lokan, Chris [2 ]
机构
[1] Zagazig Univ, Fac Comp & Informat, Zagazig, Egypt
[2] UNSW Canberra, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
关键词
ensemble learning; feature selection; rough set theory; learning classifier systems; PREDICTION; XCS;
D O I
10.1111/coin.12099
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ensemble methods aim at combining multiple learning machines to improve the efficacy in a learning task in terms of prediction accuracy, scalability, and other measures. These methods have been applied to evolutionary machine learning techniques including learning classifier systems (LCSs). In this article, we first propose a conceptual framework that allows us to appropriately categorize ensemble-based methods for fair comparison and highlights the gaps in the corresponding literature. The framework is generic and consists of three sequential stages: a pre-gate stage concerned with data preparation; the member stage to account for the types of learning machines used to build the ensemble; and a post-gate stage concerned with the methods to combine ensemble output. A taxonomy of LCSs-based ensembles is then presented using this framework. The article then focuses on comparing LCS ensembles that use feature selection in the pre-gate stage. An evaluation methodology is proposed to systematically analyze the performance of these methods. Specifically, random feature sampling and rough set feature selection-based LCS ensemble methods are compared. Experimental results show that the rough set-based approach performs significantly better than the random subspace method in terms of classification accuracy in problems with high numbers of irrelevant features. The performance of the two approaches are comparable in problems with high numbers of redundant features.
引用
收藏
页码:554 / 578
页数:25
相关论文
共 50 条
  • [1] Classifier ensemble for mammography CAD system combining feature selection with ensemble learning
    Nemoto, M
    Shimizu, A
    Kobatake, H
    Takeo, H
    Nawano, S
    CARS 2005: Computer Assisted Radiology and Surgery, 2005, 1281 : 1047 - 1051
  • [2] Feature Selection and Ensemble Meta Classifier for Multiclass Imbalance Data Learning
    Sainin, Mohd Shamrie
    Alfred, Rayner
    Alias, Suraya
    Lammasha, Mohamed A. M.
    PROCEEDINGS OF KNOWLEDGE MANAGEMENT INTERNATIONAL CONFERENCE (KMICE) 2018, 2018, : 134 - 139
  • [3] Efficient Intrusion Detection System in the Cloud Using Fusion Feature Selection Approaches and an Ensemble Classifier
    Bakro, Mhamad
    Kumar, Rakesh Ranjan
    Alabrah, Amerah A.
    Ashraf, Zubair
    Bisoy, Sukant K.
    Parveen, Nikhat
    Khawatmi, Souheil
    Abdelsalam, Ahmed
    ELECTRONICS, 2023, 12 (11)
  • [4] A Feature Selection-based Ensemble Method for Arrhythmia Classification
    Namsrai, Erdenetuya
    Munkhdalai, Tsendsuren
    Li, Meijing
    Shin, Jung-Hoon
    Namsrai, Oyun-Erdene
    Ryu, Keun Ho
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2013, 9 (01): : 31 - 40
  • [5] Ensemble and Feature Selection-based Intrusion Detection System for Multi-attack Environment
    Khonde, S. R.
    Ulagamuthalvi, V
    PROCEEDINGS OF THE 2020 5TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND SECURITY (ICCCS-2020), 2020,
  • [6] IDS-EFS: Ensemble feature selection-based method for intrusion detection system
    Akhiat, Yassine
    Touchanti, Kaouthar
    Zinedine, Ahmed
    Chahhou, Mohamed
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (05) : 12917 - 12937
  • [7] IDS-EFS: Ensemble feature selection-based method for intrusion detection system
    Yassine Akhiat
    Kaouthar Touchanti
    Ahmed Zinedine
    Mohamed Chahhou
    Multimedia Tools and Applications, 2024, 83 : 12917 - 12937
  • [8] A Novel Feature Selection-Based Sequential Ensemble Learning Method for Class Noise Detection in High-Dimensional Data
    Chen, Kai
    Guan, Donghai
    Yuan, Weiwei
    Li, Bohan
    Khattak, Asad Masood
    Alfandi, Omar
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2018, 2018, 11323 : 55 - 65
  • [9] A Taxonomy of Optimal Feature Learning Model in Combined Data Mining System
    Nivetha, S.
    Sheshasaayee, Ananthi
    2021 IEEE INTERNATIONAL CONFERENCE ON MOBILE NETWORKS AND WIRELESS COMMUNICATIONS (ICMNWC), 2021,
  • [10] An Experimental evaluation of Feature selection based Classifier Ensemble for Handwritten Numeral Recognition
    Singh, Pratibha
    Verma, Ajay
    Chaudhari, Narendra S.
    2014 INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION SYSTEMS (ICECS), 2014,