Fast and accurate initialization of the free-water imaging model parameters from multi-shell diffusion MRI

被引:23
作者
Bergmann, Orjan [1 ,2 ]
Henriques, Rafael [3 ]
Westin, Carl-Fredrik [1 ]
Pasternak, Ofer [1 ,4 ]
机构
[1] Harvard Med Sch, Brigham & Womens Hosp, Dept Radiol, Boston, MA 02115 USA
[2] Norwegian Multiple Sclerosis Competence Ctr, Bergen, Norway
[3] Champalimaud Ctr Unknown, Champalimaud Neurosci Programme, Lisbon, Portugal
[4] Harvard Med Sch, Brigham & Womens Hosp, Dept Psychiat, 1249 Boylston St, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
diffusion tensor imaging (DTI); Free-Water Imaging; multi-shell diffusion imaging; LEAST-SQUARES; TENSOR; ELIMINATION; OPTIMIZATION; PERFUSION; BRAIN;
D O I
10.1002/nbm.4219
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Cerebrospinal fluid partial volume effect is a known bias in the estimation of Diffusion Tensor Imaging (DTI) parameters from diffusion MRI data. The Free-Water Imaging model for diffusion MRI data adds a second compartment to the DTI model, which explicitly accounts for the signal contribution of extracellular free-water, such as cerebrospinal fluid. As a result the DTI parameters obtained through the free-water model are corrected for partial volume effects, and thus better represent tissue microstructure. In addition, the model estimates the fractional volume of free-water, and can be used to monitor changes in the extracellular space. Under certain assumptions, the model can be estimated from single-shell diffusion MRI data. However, by using data from multi-shell diffusion acquisitions, these assumptions can be relaxed, and the fit becomes more robust. Nevertheless, fitting the model to multi-shell data requires high computational cost, with a non-linear iterative minimization, which has to be initialized close enough to the global minimum to avoid local minima and to robustly estimate the model parameters. Here we investigate the properties of the main initialization approaches that are currently being used, and suggest new fast approaches to improve the initial estimates of the model parameters. We show that our proposed approaches provide a fast and accurate initial approximation of the model parameters, which is very close to the final solution. We demonstrate that the proposed initializations improve the final outcome of non-linear model fitting.
引用
收藏
页数:14
相关论文
共 42 条
[1]   Free water elimination improves test-retest reproducibility of diffusion tensor imaging indices in the brain: A longitudinal multisite study of healthy elderly subjects [J].
Albi, Angela ;
Pasternak, Ofer ;
Minati, Ludovico ;
Marizzoni, Moira ;
Bartres-Faz, David ;
Bargallo, Nuria ;
Bosch, Beatriz ;
Rossini, Paolo Maria ;
Marra, Camillo ;
Mueller, Bernhard ;
Fiedler, Ute ;
Wiltfang, Jens ;
Roccatagliata, Luca ;
Picco, Agnese ;
Nobili, Flavio Mariano ;
Blin, Oliver ;
Sein, Julien ;
Ranjeva, Jean-Philippe ;
Didic, Mira ;
Bombois, Stephanie ;
Lopes, Renaud ;
Bordet, Regis ;
Gros-Dagnac, Helene ;
Payoux, Pierre ;
Zoccatelli, Giada ;
Alessandrini, Franco ;
Beltramello, Alberto ;
Ferretti, Antonio ;
Caulo, Massimo ;
Aiello, Marco ;
Cavaliere, Carlo ;
Soricelli, Andrea ;
Parnetti, Lucilla ;
Tarducci, Roberto ;
Floridi, Piero ;
Tsolaki, Magda ;
Constantinidis, Manos ;
Drevelegas, Antonios ;
Frisoni, Giovanni ;
Jovicich, Jorge .
HUMAN BRAIN MAPPING, 2017, 38 (01) :12-26
[2]   Analysis of partial volume effects in diffusion-tensor MRI [J].
Alexander, AL ;
Hasan, KM ;
Lazar, M ;
Tsuruda, JS ;
Parker, DL .
MAGNETIC RESONANCE IN MEDICINE, 2001, 45 (05) :770-780
[3]   Diffusion tensor imaging of the brain [J].
Alexander, Andrew L. ;
Lee, Jee Eun ;
Lazar, Mariana ;
Field, Aaron S. .
NEUROTHERAPEUTICS, 2007, 4 (03) :316-329
[4]   Diffusion tensor imaging (DTI)-based white matter mapping in brain research: A review [J].
Assaf, Yaniv ;
Pasternak, Ofer .
JOURNAL OF MOLECULAR NEUROSCIENCE, 2008, 34 (01) :51-61
[5]   MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
BIOPHYSICAL JOURNAL, 1994, 66 (01) :259-267
[6]  
Basser PJ, 1996, J MAGN RESON SER B, V111, P209, DOI 10.1016/j.jmr.2011.09.022
[7]   Re-examining age-related differences in white matter microstructure with free-water corrected diffusion tensor imaging [J].
Chad, Jordan A. ;
Pasternak, Ofer ;
Salat, David H. ;
Chen, J. Jean .
NEUROBIOLOGY OF AGING, 2018, 71 :161-170
[8]   Diffusion kurtosis imaging with free water elimination: A bayesian estimation approach [J].
Collier, Quinten ;
Veraart, Jelle ;
Jeurissen, Ben ;
Vanhevel, Floris ;
Pullens, Pim ;
Parizel, Paul M. ;
den Dekker, Arnold J. ;
Sijbers, Jan .
MAGNETIC RESONANCE IN MEDICINE, 2018, 80 (02) :802-813
[9]   Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data [J].
Daducci, Alessandro ;
Canales-Rodriguez, Erick J. ;
Zhang, Hui ;
Dyrby, Tim B. ;
Alexander, Daniel C. ;
Thiran, Jean-Philippe .
NEUROIMAGE, 2015, 105 :32-44
[10]   Microstructure Imaging of Crossing (MIX) White Matter Fibers from diffusion MRI [J].
Farooq, Hamza ;
Xu, Junqian ;
Nam, Jung Who ;
Keefe, Daniel F. ;
Yacoub, Essa ;
Georgiou, Tryphon ;
Lenglet, Christophe .
SCIENTIFIC REPORTS, 2016, 6