Maximum Principle for Space and Time-Space Fractional Partial Differential Equations

被引:7
作者
Kirane, Mokhtar [1 ,2 ]
Torebek, Berikbol T. [3 ,4 ,5 ]
机构
[1] Khalifa Univ, Coll Arts & Sci, Dept Math, POB 127788, Abu Dhabi, U Arab Emirates
[2] King Abdulaziz Univ, Dept Math, NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
[3] Inst Math & Math Modeling, 125 Pushkin Str, Alma Ata 050010, Kazakhstan
[4] Al Farabi Kazakh Natl Univ, Al Farabi Ave 71, Alma Ata 050040, Kazakhstan
[5] Univ Ghent, Dept Math Anal Log & Discrete Math, Krijgslaan 281, Ghent, Belgium
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2021年 / 40卷 / 03期
关键词
Caputo derivative; sequential derivative; time-space fractional diffusion equation; fractional elliptic equation; maximum principle; BOUNDARY-VALUE PROBLEMS; DIFFUSION-EQUATIONS; EXTREMUM PRINCIPLE; RIEMANN-LIOUVILLE; CAPUTO; DERIVATIVES; REGULARITY;
D O I
10.4171/ZAA/1685
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, new estimates of the sequential Caputo fractional derivatives of a function at its extremum points are obtained. We derive comparison principles for the linear fractional differential equations, then apply these principles to obtain lower and upper bounds of solutions of linear and nonlinear fractional differential equations. The extremum principle is then applied to show that the initial-boundary-value problem for nonlinear anomalous diffusion admits at most one classical solution and this solution depends continuously on the initial and boundary data. This answers positively to the open problem about maximum principle for the space and time-space fractional PDEs posed by Y. Luchko [Fract. Calc. Appl. Anal. 14 (2011)]. The extremum principle for an elliptic equation with a fractional derivative and for the fractional Laplace equation are also proved.
引用
收藏
页码:277 / 301
页数:25
相关论文
共 38 条
[1]  
Abatangelo N., 2019, SPRINGER INDAM SER, V33, P1
[2]   Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives [J].
Al-Refai, Mohammed ;
Luchko, Yuri .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :40-51
[3]   Maximum principle for the fractional diffusion equations with the Riemann-Liouville fractional derivative and its applications [J].
Al-Refai, Mohammed ;
Luchko, Yuri .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (02) :483-498
[4]  
Al-Refai M, 2012, ELECTRON J QUAL THEO, P1
[5]   Some comparison principles for fractional differential equations and systems [J].
Alshabanat, Amal ;
Jleli, Mohamed ;
Samet, Bessem .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (03) :2405-2415
[6]   Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates [J].
Cabre, Xavier ;
Sire, Yannick .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01) :23-53
[7]   Maximum principles for time-fractional Caputo-Katugampola diffusion equations [J].
Cao, Liang ;
Kong, Hua ;
Zeng, Sheng-Da .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (04) :2257-2267
[8]   Regularity of Radial Extremal Solutions for Some Non-Local Semilinear Equations [J].
Capella, Antonio ;
Davila, Juan ;
Dupaigne, Louis ;
Sire, Yannick .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (08) :1353-1384
[9]   A MAXIMUM PRINCIPLE FOR FRACTIONAL DIFFUSION DIFFERENTIAL EQUATIONS [J].
Chan, C. Y. ;
Liu, H. T. .
QUARTERLY OF APPLIED MATHEMATICS, 2016, 74 (03) :421-427
[10]   The maximum principles for fractional Laplacian equations and their applications [J].
Cheng, Tingzhi ;
Huang, Genggeng ;
Li, Congming .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (06)