Evaluation of Hybrid Parallel Cell List Algorithms For Monte Carlo Simulation

被引:0
|
作者
Rushaidat, Kamel [1 ]
Schwiebert, Loren [1 ]
Jackman, Brock [1 ]
Mick, Jason [2 ]
Potoff, Jeffrey [2 ]
机构
[1] Wayne State Univ, Dept Comp Sci, Detroit, MI 48202 USA
[2] Wayne State Univ, Dept Chem Engn & Mat Sci, Detroit, MI USA
关键词
Cell List; Monte Carlo Simulations; Hybrid Parallel Architectures; Gibbs Ensemble;
D O I
10.1109/HPCC-CSS-ICESS.2015.260
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper describes efficient, scalable parallel implementations of the conventional cell list method and a modified cell list method to calculate the total system intermolecular Lennard-Jones force interactions in the Monte Carlo Gibbs ensemble. We targeted this part of the Gibbs ensemble for optimization because it is the most computationally demanding part of the force interactions in the simulation, as it involves all the molecules in the system. The modified cell list implementation reduces the number of particles that are outside the interaction range by making the cells smaller, thus reducing the number of unnecessary distance evaluations. Evaluation of the two cell list methods is done using a hybrid MPI+OpenMP approach and a hybrid MPI+CUDA approach. The cell list methods are evaluated on a small cluster of multicore CPUs, Intel Phi coprocessors, and GPUs. The performance results are evaluated using different combinations of MPI processes, threads, and problem sizes.
引用
收藏
页码:1859 / 1864
页数:6
相关论文
共 50 条
  • [41] A Monte Carlo Evaluation of Weighted Community Detection Algorithms
    Gates, Kathleen M.
    Henry, Teague
    Steinley, Doug
    Fair, Damien A.
    FRONTIERS IN NEUROINFORMATICS, 2016, 10
  • [42] DL_MONTE: a general purpose program for parallel Monte Carlo simulation
    Purton, J. A.
    Crabtree, J. C.
    Parker, S. C.
    MOLECULAR SIMULATION, 2013, 39 (14-15) : 1240 - 1252
  • [43] ON THE EVALUATION OF CLUSTERING ALGORITHMS - A MONTE-CARLO APPROACH
    SCHNEIDER, W
    SCHEIBLER, D
    PSYCHOLOGISCHE BEITRAGE, 1983, 25 (1-2): : 238 - 254
  • [44] HIGHER-ORDER HYBRID MONTE-CARLO ALGORITHMS
    CREUTZ, M
    GOCKSCH, A
    PHYSICAL REVIEW LETTERS, 1989, 63 (01) : 9 - 12
  • [45] Business Scenario Evaluation Using Monte Carlo Simulation on Qualitative and Quantitative Hybrid Model
    Samejima, Masaki
    Akiyoshi, Masanori
    Mitsukuni, Koshichiro
    Komoda, Norihisa
    ELECTRICAL ENGINEERING IN JAPAN, 2010, 170 (03) : 9 - 18
  • [46] Evaluation of Single-Node Performance of Parallel Algorithms for Multigroup Monte Carlo Particle Transport Methods
    Ma, Donghui
    Yang, Bo
    Zhang, Qingyang
    Liu, Jie
    Li, Tiejun
    FRONTIERS IN ENERGY RESEARCH, 2021, 9
  • [47] A sparse parallel hybrid Monte Carlo algorithm for matrix computations
    Branford, S
    Weihrauch, C
    Alexandrov, V
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 3, 2005, 3516 : 743 - 751
  • [48] Hybrid Monte Carlo simulation in Positron Emission Tomography
    Sarrhini, Otman
    Bentourkia, M'hamed
    2007 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-11, 2007, : 3191 - 3196
  • [49] MONTE-CARLO SIMULATION OF THE STRENGTH OF HYBRID COMPOSITES
    FUKUDA, H
    CHOU, TW
    JOURNAL OF COMPOSITE MATERIALS, 1982, 16 (SEP) : 371 - 385
  • [50] Simulation of nf=3 QCD by hybrid Monte Carlo
    Takaishi, T
    de Forcrand, P
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2001, 94 : 818 - 822