Prediction of the Time to Syncope Occurrence in Patients Diagnosed with Vasovagal Syncope

被引:2
作者
Kostoglou, Kyriaki [1 ]
Schondorf, Ronald [2 ]
Benoit, Julie [2 ]
Balegh, Saharnaz [2 ]
Mitsis, Georgios D. [3 ]
机构
[1] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ, Canada
[2] McGill Univ, Dept Neurol, Montreal, PQ, Canada
[3] McGill Univ, Dept Bioengn, Montreal, PQ, Canada
来源
INTRACRANIAL PRESSURE & NEUROMONITORING XVI | 2018年 / 126卷
关键词
Vasovagal syncope; Head-up tilt; Random forest; Feature selection; HEAD-UP TILT; PULSE-WAVE ANALYSIS; DYNAMIC CEREBRAL AUTOREGULATION; VARIABILITY;
D O I
10.1007/978-3-319-65798-1_61
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Objective: In this study we aimed to predict the time to syncope occurrence (TSO) in patients with vasovagal syncope (VVS), solely based on measurements recorded during the supine position of the head-up tilt (HUT) testing protocol. Methods: We extracted various time and frequency domain features related to morphological aspects of arterial blood pressure (ABP) and the electrocardiogram (ECG) raw signals as well as to dynamic interactions between beat-to-beat ABP, heart rate, and cerebral blood flow velocity. From these we identified the most predictive features related to TSO. Results: Specifically, when no orthostatic stress is involved, TSO in VVS patients can be predicted with high accuracy from a set of only five ECG features.
引用
收藏
页码:313 / 316
页数:4
相关论文
共 21 条
[1]   Arterial blood pressure measurement and pulse wave analysis-their role in enhancing cardiovascular assessment [J].
Avolio, Alberto P. ;
Butlin, Mark ;
Walsh, Andrew .
PHYSIOLOGICAL MEASUREMENT, 2010, 31 (01) :R1-R47
[2]   Changes in the transthoracic impedance signal predict the outcome of a 70° head-up tilt test [J].
Bellard, E ;
Fortrat, JO ;
Schang, D ;
Dupuis, JM ;
Victor, J ;
Lefthériotis, G .
CLINICAL SCIENCE, 2003, 104 (02) :119-126
[3]   Early predictive indexes of head-up tilt table testing outcomes utilizing heart rate and arterial pressure changes [J].
Bellard, E ;
Fortrat, JO ;
Vielle, B ;
Dupuis, JM ;
Victor, J ;
Lefthériotis, G .
AMERICAN JOURNAL OF CARDIOLOGY, 2001, 88 (08) :903-+
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]   Testing Frequency-Domain Causality in Multivariate Time Series [J].
Faes, Luca ;
Porta, Alberto ;
Nollo, Giandomenico .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (08) :1897-1906
[6]  
Guyon I., 2003, INTRO VARIABLE FEATU
[7]  
Hamilton J.D., 2020, Time series analysis
[8]  
KENNY RA, 1986, LANCET, V1, P1352
[9]   Classification and Prediction of Clinical Improvement in Deep Brain Stimulation From Intraoperative Microelectrode Recordings [J].
Kostoglou, Kyriaki ;
Michmizos, Konstantinos P. ;
Stathis, Pantelis ;
Sakas, Damianos ;
Nikita, Konstantina S. ;
Mitsis, Georgios D. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (05) :1123-1130
[10]  
Ltkepohl H., 2005, New Introduction to Multiple Time Series Analysis, DOI [DOI 10.1007/978-3-540-27752-17, 10.1007/978-3-540-27752-1]