The Combined Influence of Hydrogel Stiffness and Matrix-Bound Hyaluronic Acid Content on Glioblastoma Invasion

被引:79
作者
Chen, Jee-Wei Emily [1 ]
Pedron, Sara [2 ]
Harley, Brendan A. C. [1 ,3 ]
机构
[1] Univ Illinois, Dept Chem & Biomol Engn, 600 S Mathews St, Urbana, IL 61801 USA
[2] Univ Illinois, Carl R Woese Inst Genom Biol, 1206 W Gregory Dr, Urbana, IL 61801 USA
[3] Univ Illinois, Carl R Woese Inst Genom Biol, 600 S Mathews St, Urbana, IL 61801 USA
关键词
MESENCHYMAL STEM-CELLS; IN-VITRO; GLIOMA INVASION; TUMOR-GROWTH; BRAIN-TUMORS; CANCER CELLS; 3D; MIGRATION; SCAFFOLDS; PROMOTES;
D O I
10.1002/mabi.201700018
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Glioblastoma (GBM) is the most common and lethal form of brain cancer. Its high mortality is associated with its aggressive invasion throughout the brain. The heterogeneity of stiffness and hyaluronic acid (HA) content within the brain makes it difficult to study invasion in vivo. A dextran-bead assay is employed to quantify GBM invasion within HA-functionalized gelatin hydrogels. Using a library of stiffness-matched hydrogels with variable levels of matrix-bound HA, it is reported that U251 GBM invasion is enhanced in softer hydrogels but reduced in the presence of matrix-bound HA. Inhibiting HA-CD44 interactions reduces invasion, even in hydrogels lacking matrix-bound HA. Analysis of HA biosynthesis suggests that GBM cells compensate for a lack of matrix-bound HA by producing soluble HA to stimulate invasion. Together, a robust method is showed to quantify GBM invasion over long culture times to reveal the coordinated effect of matrix stiffness, immobilized HA, and compensatory HA production on GBM invasion.
引用
收藏
页数:11
相关论文
共 75 条
  • [41] Molecular targets of glioma invasion
    Nakada, M.
    Nakada, S.
    Demuth, T.
    Tran, N. L.
    Hoelzinger, D. B.
    Berens, M. E.
    [J]. CELLULAR AND MOLECULAR LIFE SCIENCES, 2007, 64 (04) : 458 - 478
  • [42] HEF1 is a necessary and specific downstream effector of FAK that promotes the migration of glioblastoma cells
    Natarajan, M
    Stewart, JE
    Golemis, EA
    Pugacheva, EN
    Alexandropoulos, K
    Cox, BD
    Wang, W
    Grammer, JR
    Gladson, CL
    [J]. ONCOGENE, 2006, 25 (12) : 1721 - 1732
  • [43] Park MJ, 2002, CANCER RES, V62, P6318
  • [44] Parney IF, 2012, ADV EXP MED BIOL, V746, P42, DOI 10.1007/978-1-4614-3146-6_4
  • [45] Impact of the biophysical features of a 3D gelatin microenvironment on glioblastoma malignancy
    Pedron, S.
    Harley, B. A. C.
    [J]. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2013, 101 (12) : 3404 - 3415
  • [46] Spatially Gradated Hydrogel Platform as a 3D Engineered Tumor Microenvironment
    Pedron, Sara
    Becka, Eftalda
    Harley, Brendan A.
    [J]. ADVANCED MATERIALS, 2015, 27 (09) : 1567 - +
  • [47] Regulation of glioma cell phenotype in 3D matrices by hyaluronic acid
    Pedron, Sara
    Becka, Eftalda
    Harley, Brendan A. C.
    [J]. BIOMATERIALS, 2013, 34 (30) : 7408 - 7417
  • [48] Osteopontin-CD44 Signaling in the Glioma Perivascular Niche Enhances Cancer Stem Cell Phenotypes and Promotes Aggressive Tumor Growth
    Pietras, Alexander
    Katz, Amanda M.
    Ekstroem, Elin J.
    Wee, Boyoung
    Halliday, John J.
    Pitter, Kenneth L.
    Werbeck, Jillian L.
    Amankulor, Nduka M.
    Huse, Jason T.
    Holland, Eric C.
    [J]. CELL STEM CELL, 2014, 14 (03) : 357 - 369
  • [49] Isolation and characterization of cancer stem like cells in human glioblastoma cell lines
    Qiang, Lei
    Yang, Yong
    Ma, Yan-Jun
    Chen, Fei-Hong
    Zhang, Ling-Bo
    Liu, Wei
    Qi, Qi
    Lu, Na
    Tao, Lei
    Wang, Xiao-Tang
    You, Qi-Dong
    Guo, Qing-Long
    [J]. CANCER LETTERS, 2009, 279 (01) : 13 - 21
  • [50] Radotra B, 1997, J PATHOL, V181, P434