Solution Analysis of the fractional-order Lu hyperchaotic system Based on Adomian Decomposition

被引:0
作者
Lei Tengfei [1 ]
Fu Haiyan [1 ]
Dai Wenpeng [1 ]
Zang Hong-yan [1 ]
机构
[1] Qilu Inst Technol, Collaborat Innovat Ctr Memrist Comp Applicat CICM, Jinan, Peoples R China
来源
2019 CHINESE AUTOMATION CONGRESS (CAC2019) | 2019年
关键词
Adomian decomposition; fractional-order chaotic system; style; bifurcation diagram; Lyapunov exponent; CHAOTIC SYSTEMS; SYNCHRONIZATION;
D O I
10.1109/cac48633.2019.8996725
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, fractional-order Lu chaotic system is studied and simulated by Adomian decomposition method. The dynamic behavior of fractional-order chaotic system from Period to chaos is analyzed from bifurcation diagram and Lyapunov exponent spectrum numerical simulation under single parameter variation of the system. The simulation results show that the higher the fractional chaotic Order of system Q, the lower the system complexity. The simulation results provide theoretical support for the application of the system to chaotic secure communication.
引用
收藏
页码:3800 / 3803
页数:4
相关论文
共 16 条
  • [1] Bao BC, 2009, J SYST ENG ELECTRON, V20, P1179
  • [2] An adaptive method to parameter identification and synchronization of fractional-order chaotic systems with parameter uncertainty
    Behinfaraz, Reza
    Badamchizadeh, Mohammadali
    Ghiasi, Amir Rikhtegar
    [J]. APPLIED MATHEMATICAL MODELLING, 2016, 40 (7-8) : 4468 - 4479
  • [3] CHEN H, 2016, J HENAN NORM UNIV, V44, P59, DOI DOI 10.16366/j.cnki.1000-2367.2016.01.011
  • [4] He S B, 2014, ACTA PHYS SINICA, V63
  • [5] Numerical analysis of a fractional-order chaotic system based on conformable fractional-order derivative
    He, Shaobo
    Sun, Kehui
    Mei, Xiaoyong
    Yan, Bo
    Xu, Siwei
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (01):
  • [6] Heng Chen Lei Tengfei, 2015, J HEBEI NORMAL U NAT, V130, P900
  • [7] Hilfer R., 2000, APPL FRACTIONAL CALC
  • [8] Analysis and circuit implementation for the fractional-order Lorenz system
    Jia Hong-Yan
    Chen Zeng-Qiang
    Xue Wei
    [J]. ACTA PHYSICA SINICA, 2013, 62 (14)
  • [9] Complex modified function projective synchronization of complex chaotic systems with known and unknown complex parameters
    Liu, Jian
    Liu, Shutang
    [J]. APPLIED MATHEMATICAL MODELLING, 2017, 48 : 440 - 450
  • [10] Nonlinear observer design to synchronize fractional-order chaotic systems via a scalar transmitted signal
    Lu, JG
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 359 : 107 - 118