Group rings with annihilator conditions

被引:3
|
作者
Shen, L. [1 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Jiangsu, Peoples R China
关键词
group ring; Kasch ring; dual ring; CF ring; perfect duality;
D O I
10.1007/s10474-018-0860-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A ring R is called left (Kasch) dual if every (maximal) left ideal of R is a left annihilator. R is left CF if every left ideal of R is the left annihilator of a finite number of elements of R. Let RG be the group ring of a group G over a ring R. It is proved that RG is a left Kasch ring if and only if R is left Kasch and G is finite. Characterizations of left dual (left CF) group rings are also discussed in this article.
引用
收藏
页码:38 / 46
页数:9
相关论文
共 50 条
  • [31] Nilary group rings and algebras
    Al-Mallah, Omar
    Birkenmeier, Gary
    Alnoghashi, Hafedh
    TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (04) : 1051 - 1072
  • [32] THE AXIOMATICS OF FREE GROUP RINGS
    Fine, Benjamin
    Gaglione, Anthony
    Kreuzer, Martin
    Rosenberger, Gerhard
    Spellman, Dennis
    GROUPS COMPLEXITY CRYPTOLOGY, 2021, 13 (02) : 3:1 - 3:13
  • [33] On nil clean group rings
    Cui, Jian
    Li, Yuanlin
    Wang, Haobai
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (02) : 790 - 796
  • [34] ON *-CLEAN GROUP RINGS II
    Huang, Hongdi
    Li, Yuanlin
    Yuan, Pingzhi
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (07) : 3171 - 3181
  • [35] Exponents of identities of group rings
    Bezushchak, O. E.
    Zaitsev, M. V.
    MATHEMATICAL NOTES, 2011, 89 (5-6) : 605 - 612
  • [36] Exponents of identities of group rings
    O. E. Bezushchak
    M. V. Zaitsev
    Mathematical Notes, 2011, 89 : 605 - 612
  • [37] LIE *- NILPOTENCE OF GROUP RINGS
    Gao, Yanyan
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (07) : 2800 - 2812
  • [38] On Modules Over Group Rings
    Kosan, M. Tamer
    Lee, Tsiu-Kwen
    Zhou, Yiqiang
    ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (01) : 87 - 102
  • [39] Commutativity of units in group rings
    Cristo, Osnel Broche
    Milies, Cesar Polcino
    COMBINATORIAL GROUP THEORY, DISCRETE GROUPS, AND NUMBER THEORY, 2006, 421 : 87 - 99
  • [40] A Note on Semilocal Group Rings
    Angelina Y. M. Chin
    Czechoslovak Mathematical Journal, 2002, 52 : 749 - 755