Maximum norm error estimates of the Crank-Nicolson scheme for solving a linear moving boundary problem

被引:8
|
作者
Cao, Wan-Rong [1 ,2 ]
Sun, Zhi-Zhong [1 ]
机构
[1] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
[2] Southeast Univ, Sch Automat, Nanjing 210096, Peoples R China
基金
中国博士后科学基金;
关键词
Moving boundaries; Crank-Nicolson scheme; Energy analysis; Stability; Convergence; NUMERICAL-SOLUTION; ELASTIC MEMBRANE; MESH; DEFORMATION; EQUATIONS; MODEL;
D O I
10.1016/j.cam.2010.03.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Crank-Nicolson scheme is considered for solving a linear convection-diffusion equation with moving boundaries. The original problem is transformed into an equivalent system defined on a rectangular region by a linear transformation. Using energy techniques we show that the numerical solutions of the Crank-Nicolson scheme are unconditionally stable and convergent in the maximum norm. Numerical experiments are presented to support our theoretical results. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2578 / 2586
页数:9
相关论文
共 50 条
  • [1] Convergence error estimates of the Crank-Nicolson scheme for solving decoupled FBSDEs
    Yang Li
    Jie Yang
    WeiDong Zhao
    Science China Mathematics, 2017, 60 : 923 - 948
  • [2] Convergence error estimates of the Crank-Nicolson scheme for solving decoupled FBSDEs
    LI Yang
    YANG Jie
    ZHAO WeiDong
    Science China(Mathematics), 2017, 60 (05) : 923 - 948
  • [3] Convergence error estimates of the Crank-Nicolson scheme for solving decoupled FBSDEs
    Li, Yang
    Yang, Jie
    Zhao, WeiDong
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (05) : 923 - 948
  • [4] ERROR ESTIMATES OF THE CRANK-NICOLSON SCHEME FOR SOLVING BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS
    Zhao, Weidong
    Li, Yang
    Ju, Lili
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (04) : 876 - 898
  • [5] A CRANK-NICOLSON TYPE MINIMIZATION SCHEME FOR A HYPERBOLIC FREE BOUNDARY PROBLEM
    Akagawa, Yoshiho
    Ginder, Elliott
    Koide, Syota
    Omata, Seiro
    Svadlenka, Karel
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (05): : 2661 - 2681
  • [6] Crank-Nicolson scheme for abstract linear systems
    Piskarev, Sergey
    Zwart, Hans
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2007, 28 (5-6) : 717 - 736
  • [7] Strong-norm error estimates for the projective-difference method for parabolic equations with modified Crank-Nicolson scheme
    Smagin, VV
    MATHEMATICAL NOTES, 2003, 74 (5-6) : 864 - 873
  • [8] A posteriori error estimates for the Crank-Nicolson method for parabolic equations
    Akrivis, G
    Makridakis, C
    Nochetto, RH
    MATHEMATICS OF COMPUTATION, 2006, 75 (254) : 511 - 531
  • [9] Crank-Nicolson Scheme for Solving the Modified Nonlinear Schrodinger Equation
    Alanazi, A. A.
    Alamri, Sultan Z.
    Shafie, S.
    Puzi, Shazirawati Mohd
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2021, 31 (08) : 2789 - 2817
  • [10] Error estimates of mixed finite elements combined with Crank-Nicolson scheme for parabolic control problems
    Tang, Yuelong
    AIMS MATHEMATICS, 2023, 8 (05): : 12506 - 12519