Identification of the Domain of the Sturm-Liouville Operator on a Star Graph

被引:6
作者
Kanguzhin, Baltabek [1 ]
Rasa, Ghulam Hazrat Aimal [1 ,2 ]
Kaiyrbek, Zhalgas [1 ]
机构
[1] Al Farabi Kazakh Natl Univ, Inst Math & Math Modeling, Alma Ata 050040, Kazakhstan
[2] Shaheed Prof Rabbani Educ Univ, Kabul 1001, Afghanistan
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 07期
关键词
boundary conditions; boundary value problems; canonical problems; EIGENVALUES;
D O I
10.3390/sym13071210
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article is devoted to the unique recovering of the domain of the Sturm-Liouville operator on a star graph. The domain of the Sturm-Liouville operator is uniquely identified from the set of spectra of a finite number of specially selected canonical problems. In the general case, the domain of the definition of the original operator can be specified by integro-differential linear forms. In the case when the domain of the Sturm-Liouville operator on a star graph corresponds to the boundary value problem, it is sufficient to choose only finite parts of the spectra of canonical problems for a unique identification of the boundary form. Moreover, the above statement is valid only for a symmetric star graph.
引用
收藏
页数:15
相关论文
共 14 条
  • [1] Achebo JI, 2011, ELECT ENG APPL COMPU, V90, DOI [10.1007/978-94-007-1192-1_38, DOI 10.1007/978-94-007-1192-1_38]
  • [2] [Anonymous], 2012, TXB GRAPH THEORY
  • [4] RECOVERING OF TWO-POINT BOUNDARY CONDITIONS BY FINITE SET OF EIGENVALUES OF BOUNDARY VALUE PROBLEMS FOR HIGHER ORDER DIFFERENTIAL EQUATIONS
    Kanguzhin, B. E.
    [J]. UFA MATHEMATICAL JOURNAL, 2020, 12 (03): : 22 - 29
  • [5] Kanguzhin B.E, 2019, J MATH MECH COMPUT S, V103, P82, DOI [10.26577/JMMCS-2019-3-22, DOI 10.26577/JMMCS-2019-3-22]
  • [6] Kanguzhin B.E, 2019, J MATH MECH COMPUT S, V104, P44, DOI [10.26577/JMMCS-2019-4-m5, DOI 10.26577/JMMCS-2019-4-M5]
  • [7] Levitan BM., 1964, Russ. Math. Surv, V19, P1, DOI [10.1070/RM1964v019n02ABEH001145, DOI 10.1070/RM1964V019N02ABEH001145]
  • [8] Inverse spectral problems for Dirac operators on a star graph with mixed boundary conditions
    Liu, Dai-Quan
    Yang, Chuan-Fu
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (13) : 10663 - 10672
  • [9] Symmetric Properties of Eigenvalues and Eigenfunctions of Uniform Beams
    Nurakhmetov, Daulet
    Jumabayev, Serik
    Aniyarov, Almir
    Kussainov, Rinat
    [J]. SYMMETRY-BASEL, 2020, 12 (12): : 1 - 13
  • [10] Plaksina O.A., 1988, ACTA MATH-DJURSHOLM, V59, P1, DOI [10.1070/sm1989v064n01abeh003299, DOI 10.1070/SM1989V064N01ABEH003299]