Multifractal analysis of some multiple ergodic averages

被引:12
作者
Fan, Ai-Hua [1 ,2 ]
Schmeling, Jorg [3 ]
Wu, Meng [2 ,4 ]
机构
[1] Hua Zhong Normal Univ, Dept Math & Stochast, Wuhan 430072, Peoples R China
[2] Univ Picardie, LAMFA, UMR CNRS 7352, 33 Rue St Leu, F-80039 Amiens, France
[3] Lund Univ, Lund Inst Technol, MCMS, Box 118, SE-22100 Lund, Sweden
[4] Univ Oulu, Dept Math Sci, SF-90100 Oulu, Finland
基金
芬兰科学院;
关键词
Multifractal; Multiple ergodic average; Hausdorff dimension; HAUSDORFF DIMENSION; RECURRENCE; SYSTEMS;
D O I
10.1016/j.aim.2016.03.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the multiple ergodic averages 1/n Sigma(n)(k=1) phi(x(k), x(kq), . . . , x(kq)(l-1)), (x(n)) is an element of Sigma(m) on the symbolic space Sigma(m) = {0,1, . . . , m -1}N*. where m >= 2, l >= 2, q >= 2 are integers. We give a complete solution to the problem of multifractal analysis of the limit of the above multiple ergodic averages. Actually we develop a non-invariant and non-linear version of thermodynamic formalism that is of its own interest. We study a large plass of measures (called telescopic product measures). The special case of telescopic product measures defined by the fixed points of some non-linear transfer operators plays a crucial role in studying the level sets of the limit, which are not shift-invariant. These measures share many properties with Gibbs measures in the classical thermodynamic formalism. Our work also concerns variational principle, pressure function and Legendre transform in this new setting. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:271 / 333
页数:63
相关论文
共 50 条
  • [21] (Uniform) convergence of twisted ergodic averages
    Eisner, Tanja
    Krause, Ben
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2016, 36 : 2172 - 2202
  • [22] Powers of sequences and convergence of ergodic averages
    Frantzikinakis, N.
    Johnson, M.
    Lesigne, E.
    Wierdl, M.
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2010, 30 : 1431 - 1456
  • [23] Pointwise convergence for cubic and polynomial multiple ergodic averages of non-commuting transformations
    Chu, Qing
    Frantzikinakis, Nikos
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 : 877 - 897
  • [24] Transience and multifractal analysis
    Iommi, Godofredo
    Jordan, Thomas
    Todd, Mike
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (02): : 407 - 421
  • [25] Weak ergodic averages over dilated measures
    Sun, Wenbo
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (02) : 606 - 621
  • [26] A generalization of van der Corput's difference theorem with applications to recurrence and multiple ergodic averages
    Farhangi, Sohail
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2023, 39 (01): : 5 - 30
  • [27] Revisiting the multifractal analysis of measures
    Ben Nasr, Fathi
    Peyriere, Jacques
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (01) : 315 - 328
  • [28] Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages. IV: Divergence points and packing dimension
    Olsen, L.
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2008, 132 (08): : 650 - 678
  • [29] A CRITERION FOR ZERO AVERAGES AND FULL SUPPORT OF ERGODIC MEASURES
    Bonatti, Christian
    Diaz, Lorenzo J.
    Bochi, Jairo
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2018, 18 (01) : 15 - 61
  • [30] A good universal weight for nonconventional ergodic averages in norm
    Assani, Idris
    Moore, Ryo
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2017, 37 : 1009 - 1025