Multifractal analysis of some multiple ergodic averages

被引:12
|
作者
Fan, Ai-Hua [1 ,2 ]
Schmeling, Jorg [3 ]
Wu, Meng [2 ,4 ]
机构
[1] Hua Zhong Normal Univ, Dept Math & Stochast, Wuhan 430072, Peoples R China
[2] Univ Picardie, LAMFA, UMR CNRS 7352, 33 Rue St Leu, F-80039 Amiens, France
[3] Lund Univ, Lund Inst Technol, MCMS, Box 118, SE-22100 Lund, Sweden
[4] Univ Oulu, Dept Math Sci, SF-90100 Oulu, Finland
基金
芬兰科学院;
关键词
Multifractal; Multiple ergodic average; Hausdorff dimension; HAUSDORFF DIMENSION; RECURRENCE; SYSTEMS;
D O I
10.1016/j.aim.2016.03.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the multiple ergodic averages 1/n Sigma(n)(k=1) phi(x(k), x(kq), . . . , x(kq)(l-1)), (x(n)) is an element of Sigma(m) on the symbolic space Sigma(m) = {0,1, . . . , m -1}N*. where m >= 2, l >= 2, q >= 2 are integers. We give a complete solution to the problem of multifractal analysis of the limit of the above multiple ergodic averages. Actually we develop a non-invariant and non-linear version of thermodynamic formalism that is of its own interest. We study a large plass of measures (called telescopic product measures). The special case of telescopic product measures defined by the fixed points of some non-linear transfer operators plays a crucial role in studying the level sets of the limit, which are not shift-invariant. These measures share many properties with Gibbs measures in the classical thermodynamic formalism. Our work also concerns variational principle, pressure function and Legendre transform in this new setting. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:271 / 333
页数:63
相关论文
共 50 条
  • [1] Multifractal analysis of some multiple ergodic averages in linear Cookie-Cutter dynamical systems
    Fan, Aihua
    Liao, Lingmin
    Wu, Meng
    MATHEMATISCHE ZEITSCHRIFT, 2018, 290 (1-2) : 63 - 81
  • [2] Multifractal analysis of weighted ergodic averages
    Fan, Aihua
    ADVANCES IN MATHEMATICS, 2021, 377
  • [3] Multifractal analysis of ergodic averages: A generalization of eggleston's theorem
    Tempelman A.A.
    Journal of Dynamical and Control Systems, 2001, 7 (4) : 535 - 551
  • [4] Pointwise convergence of some multiple ergodic averages
    Donoso, Sebastian
    Sun, Wenbo
    ADVANCES IN MATHEMATICS, 2018, 330 : 946 - 996
  • [5] Level sets of multiple ergodic averages
    Fan, Ai-Hua
    Liao, Lingmin
    Ma, Ji-Hua
    MONATSHEFTE FUR MATHEMATIK, 2012, 168 (01): : 17 - 26
  • [6] Level sets of multiple ergodic averages
    Ai-Hua Fan
    Lingmin Liao
    Ji-Hua Ma
    Monatshefte für Mathematik, 2012, 168 : 17 - 26
  • [7] Multifractal analysis of the divergence points of Birkhoff averages for β-transformations
    Chen, Yuanhong
    Zhang, Zhenliang
    Zhao, Xiaojun
    MONATSHEFTE FUR MATHEMATIK, 2017, 182 (04): : 823 - 839
  • [8] MULTIPLE ERGODIC AVERAGES FOR TEMPERED FUNCTIONS
    Koutsogiannis, Andreas
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (03) : 1177 - 1205
  • [9] MULTIPLE ERGODIC AVERAGES FOR VARIABLE POLYNOMIALS
    Koutsogiannis, Andreas
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (09) : 4637 - 4668
  • [10] Multifractal analysis for Birkhoff averages on Lalley-Gatzouras repellers
    Reeve, Henry W. J.
    FUNDAMENTA MATHEMATICAE, 2011, 212 (01) : 71 - 93