A NEW SUFFICIENT CONDITION FOR SPARSE RECOVERY WITH MULTIPLE ORTHOGONAL LEAST SQUARES

被引:0
作者
Li, Haifeng [1 ]
Zhang, Jing [1 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Henan Engn Lab Big Data Stat Anal & Optimal Contr, Xinxiang 453007, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Sparse signal recovery; multiple orthogonal least squares (MOLS); sufficient condition; restricted isometry property (RIP); RESTRICTED ISOMETRY PROPERTY; MATCHING PURSUIT; SIGNALS;
D O I
10.1007/s10473-022-0308-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A greedy algorithm used for the recovery of sparse signals, multiple orthogonal least squares (MOLS) have recently attracted quite a big of attention. In this paper, we consider the number of iterations required for the MOLS algorithm for recovery of a K-sparse signal x is an element of R-n. We show that MOLS provides stable reconstruction of all K-sparse signals x from y = Ax + w in inverted right perpendicular6K/Minverted left perpendicular iterations when the matrix A satisfies the restricted isometry property (RIP) with isometry constant delta(7K) <= 0.094. Compared with the existing results, our sufficient condition is not related to the sparsity level K.
引用
收藏
页码:941 / 956
页数:16
相关论文
共 24 条
  • [1] Penalized Least Square in Sparse Setting with Convex Penalty and Non Gaussian Errors
    Abdillahi-Ali, Doualeh
    Azzaoui, Nourddine
    Guillin, Arnaud
    Le Mailloux, Guillaume
    Matsui, Tomoko
    [J]. ACTA MATHEMATICA SCIENTIA, 2021, 41 (06) : 2198 - 2216
  • [2] [Anonymous], 2013, RECENT ADV HARMONIC
  • [3] A Simple Proof of the Restricted Isometry Property for Random Matrices
    Baraniuk, Richard
    Davenport, Mark
    DeVore, Ronald
    Wakin, Michael
    [J]. CONSTRUCTIVE APPROXIMATION, 2008, 28 (03) : 253 - 263
  • [4] Blumensath T., 2007, DIFFERENCE ORTHOGONA, V24, P104
  • [5] Decoding by linear programming
    Candes, EJ
    Tao, T
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) : 4203 - 4215
  • [6] ORTHOGONAL LEAST-SQUARES METHODS AND THEIR APPLICATION TO NON-LINEAR SYSTEM-IDENTIFICATION
    CHEN, S
    BILLINGS, SA
    LUO, W
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1989, 50 (05) : 1873 - 1896
  • [7] A sharp recovery condition for block sparse signals by block orthogonal multi-matching pursuit
    Chen WenGu
    Ge HuanMin
    [J]. SCIENCE CHINA-MATHEMATICS, 2017, 60 (07) : 1325 - 1340
  • [8] STABLE RECOVERY OF SIGNALS WITH THE HIGH ORDER D-RIP CONDITION
    Chen, Wengu
    Li, Yaling
    [J]. ACTA MATHEMATICA SCIENTIA, 2016, 36 (06) : 1721 - 1730
  • [9] Robustness of orthogonal matching pursuit under restricted isometry property
    Dan Wei
    Wang RenHong
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (03) : 627 - 634
  • [10] Perturbation Analysis of Orthogonal Least Squares
    Geng, Pengbo
    Chen, Wengu
    Ge, Huanmin
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2019, 62 (04): : 780 - 797