Factorization of multipliers in passivity and IQC analysis

被引:16
作者
Carrasco, Joaquin [1 ]
Heath, William P. [1 ]
Lanzon, Alexander [1 ]
机构
[1] Univ Manchester, Control Syst Ctr, Sch Elect & Elect Engn, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Absolute stability; IQC; Passivity; Multipliers; Canonical factorization; ZAMES-FALB MULTIPLIERS; STABILITY MULTIPLIERS; SYSTEMS; ROBUSTNESS;
D O I
10.1016/j.automatica.2012.02.035
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multipliers are often used to find conditions for the absolute stability of Lur'e systems. They can be used either in conjunction with passivity theory or within the more recent framework of integral quadratic constraints (IQCs). We compare the use of multipliers in both approaches. Passivity theory requires that the multipliers have a canonical factorization and it has been suggested in the literature that this represents an advantage of the IQC theory. We consider sufficient conditions on the nonlinearity class for the associated multipliers to have a canonical factorization. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:909 / 916
页数:8
相关论文
共 46 条
[1]   Delay-Integral-Quadratic Constraints and Stability Multipliers for Systems With MIMO Nonlinearities [J].
Altshuller, Dmitry A. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (04) :738-747
[2]  
Anderson B. D. O., 1973, Network Analysis and Synthesis: A Modern Systems Approach
[3]  
[Anonymous], 1987, A Course in H Control Theory
[4]   LINEAR MATRIX INEQUALITIES IN ROBUSTNESS ANALYSIS WITH MULTIPLIERS [J].
BALAKRISHNAN, V .
SYSTEMS & CONTROL LETTERS, 1995, 25 (04) :265-272
[5]  
Bart H., 2010, Oper. Theory Adv. Appl., V200
[6]   Stability multipliers and μ upper bounds:: Connections and implications for numerical verification of frequency domain conditions [J].
Chou, YS ;
Tits, AL ;
Balakrishnan, V .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (05) :906-913
[7]   New results for analysis of systems with repeated nonlinearities [J].
D'Amato, FJ ;
Rotea, MA ;
Megretski, AV ;
Jönsson, UT .
AUTOMATICA, 2001, 37 (05) :739-747
[8]  
Desoer CA., 1975, FEEDBACK SYSTEMS INP
[9]   Analysis of robust H-2 performance using multiplier theory [J].
Feron, E .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (01) :160-177
[10]   Integral quadratic constraint approach vs. multiplier approach [J].
Fu, MY ;
Dasgupta, S ;
Soh, YC .
AUTOMATICA, 2005, 41 (02) :281-287