Hardy inequalities for Robin Laplacians

被引:17
作者
Kovarik, Hynek [1 ]
Laptev, Ari [2 ]
机构
[1] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
[2] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England
关键词
Robin Laplacian; Hardy inequality; GEOMETRICAL VERSION;
D O I
10.1016/j.jfa.2012.03.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish a Hardy inequality for Laplace operators with Robin boundary conditions. For convex domains, in particular, we show explicitly how the corresponding Hardy weight depends on the coefficient of the Robin boundary conditions. We also study several extensions to non-convex and unbounded domains. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:4972 / 4985
页数:14
相关论文
共 19 条
[1]   ON STRONG BARRIERS AND AN INEQUALITY OF HARDY FOR DOMAINS IN RN [J].
ANCONA, A .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1986, 34 :274-290
[2]  
[Anonymous], 2003, SOBOLEV SPACES
[3]  
[Anonymous], 1985, Sobolev Spaces
[4]  
[Anonymous], SPECTRAL THEORY DIFF
[5]  
Avkhadiev F. G., 2006, LOBACHEVSKII J MATH, V21, P3
[6]  
Avkhadiev F. G, 2006, FUNCTION SPACES APPR, V255, P2, DOI [DOI 10.1134/S008154380604002X, 10.1134/S008154380604002X]
[7]   Unified Poincare and Hardy inequalities with sharp constants for convex domains [J].
Avkhadiev, Farit G. ;
Wirths, Karl-Joachim .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2007, 87 (8-9) :632-642
[8]  
Birman MS., 1966, Am. Math. Soc. Transl. Ser, V2, P23
[9]  
Brezis H., 1997, Ann. Sc. Norm. Super. Pisa Cl. Sci., V25, P217
[10]  
Davies E. B., 1999, OPER THEORY ADV APPL, V110, P55