Possible top cells for next-generation Si-based tandem solar cells

被引:39
作者
Lu, Shuaicheng [1 ]
Chen, Chao [1 ]
Tang, Jiang [1 ]
机构
[1] Huazhong Univ Sci & Technol HUST, Sargent Joint Res Ctr, Wuhan Natl Lab Optoelect WNLO, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金; 中国博士后科学基金;
关键词
photovoltaic market; Si-based solar cell; efficiency limit; tandem; top cell; OXIDE BUFFER LAYER; EFFICIENCY; PEROVSKITE; VOLTAGE; LIMIT; CDSE; SE;
D O I
10.1007/s12200-020-1050-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Si-based solar cells, which have the advantages of high efficiency, low manufacturing costs, and outstanding stability, are dominant in the photovoltaic market. Currently, state-of-the-art Si-based solar cells are approaching the practical limit of efficiency. Constructing Si-based tandem solar cells is one available pathway to break the theoretical efficiency limit of single-junction silicon solar cells. Various top cells have been explored recently in the construction of Si-based tandem devices. Nevertheless, many challenges still stand in the way of extensive commercial application of Si-based tandem solar cells. Herein, we summarize the recent progress of representative Si-based tandem solar cells with different top cells, such as III-V solar cells, wide-bandgap perovskite solar cells, cadmium telluride (CdTe)-related solar cells, Cu(In,Ga)(Se,S)(2)(CIGS)-related solar cells, and amorphous silicon (a-Si) solar cells, and we analyze the main bottlenecks for their next steps of development. Subsequently, we suggest several potential candidate top cells for Si-based tandem devices, such as Sb2S3, Se, CdSe, and Cu2O. These materials have great potential for the development of high-performance and low-cost Si-based tandem solar cells in the future.
引用
收藏
页码:246 / 255
页数:10
相关论文
共 77 条
[61]   DETAILED BALANCE LIMIT OF EFFICIENCY OF P-N JUNCTION SOLAR CELLS [J].
SHOCKLEY, W ;
QUEISSER, HJ .
JOURNAL OF APPLIED PHYSICS, 1961, 32 (03) :510-&
[62]   Multijunction single-crystal CdTe-based solar cells: Opportunities and challenges [J].
Sivananthan, Sivalingam ;
Garland, James W. ;
Carmody, Michael W. .
ENERGY HARVESTING AND STORAGE: MATERIALS, DEVICES, AND APPLICATIONS, 2010, 7683
[63]   CdCl2 passivation of polycrystalline CdMgTe and CdZnTe absorbers for tandem photovoltaic cells [J].
Swanson, Drew E. ;
Reich, Carey ;
Abbas, Ali ;
Shimpi, Tushar ;
Liu, Hanxiao ;
Ponce, Fernando A. ;
Walls, John M. ;
Zhang, Yong-Hang ;
Metzger, Wyatt K. ;
Sampath, W. S. ;
Holman, Zachary C. .
JOURNAL OF APPLIED PHYSICS, 2018, 123 (20)
[64]   III-V/Si hybrid photonic devices by direct fusion bonding [J].
Tanabe, Katsuaki ;
Watanabe, Katsuyuki ;
Arakawa, Yasuhiko .
SCIENTIFIC REPORTS, 2012, 2
[66]   A road towards 25% efficiency and beyond: perovskite tandem solar cells [J].
Todorov, T. ;
Gunawan, O. ;
Guha, S. .
MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2016, 1 (04) :370-376
[67]   Materials perspectives for next-generation low-cost tandem solar cells [J].
Todorov, Teodor K. ;
Bishop, Douglas M. ;
Lee, Yun Seog .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 180 :350-357
[68]   Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material [J].
Todorov, Teodor K. ;
Singh, Saurabh ;
Bishop, Douglas M. ;
Gunawan, Oki ;
Lee, Yun Seog ;
Gershon, Talia S. ;
Brew, Kevin W. ;
Antunez, Priscilla D. ;
Haight, Richard .
NATURE COMMUNICATIONS, 2017, 8
[69]   Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer [J].
Wang, Liang ;
Li, Deng-Bing ;
Li, Kanghua ;
Chen, Chao ;
Deng, Hui-Xiong ;
Gao, Liang ;
Zhao, Yang ;
Jiang, Fan ;
Li, Luying ;
Huang, Feng ;
He, Yisu ;
Song, Haisheng ;
Niu, Guangda ;
Tang, Jiang .
NATURE ENERGY, 2017, 2 (04)
[70]   Tandem Solar Cells Based on High-Efficiency c-Si Bottom Cells: Top Cell Requirements for >30% Efficiency [J].
White, Thomas P. ;
Lal, Niraj N. ;
Catchpole, Kylie R. .
IEEE JOURNAL OF PHOTOVOLTAICS, 2014, 4 (01) :208-214