Possible top cells for next-generation Si-based tandem solar cells

被引:39
作者
Lu, Shuaicheng [1 ]
Chen, Chao [1 ]
Tang, Jiang [1 ]
机构
[1] Huazhong Univ Sci & Technol HUST, Sargent Joint Res Ctr, Wuhan Natl Lab Optoelect WNLO, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金; 中国博士后科学基金;
关键词
photovoltaic market; Si-based solar cell; efficiency limit; tandem; top cell; OXIDE BUFFER LAYER; EFFICIENCY; PEROVSKITE; VOLTAGE; LIMIT; CDSE; SE;
D O I
10.1007/s12200-020-1050-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Si-based solar cells, which have the advantages of high efficiency, low manufacturing costs, and outstanding stability, are dominant in the photovoltaic market. Currently, state-of-the-art Si-based solar cells are approaching the practical limit of efficiency. Constructing Si-based tandem solar cells is one available pathway to break the theoretical efficiency limit of single-junction silicon solar cells. Various top cells have been explored recently in the construction of Si-based tandem devices. Nevertheless, many challenges still stand in the way of extensive commercial application of Si-based tandem solar cells. Herein, we summarize the recent progress of representative Si-based tandem solar cells with different top cells, such as III-V solar cells, wide-bandgap perovskite solar cells, cadmium telluride (CdTe)-related solar cells, Cu(In,Ga)(Se,S)(2)(CIGS)-related solar cells, and amorphous silicon (a-Si) solar cells, and we analyze the main bottlenecks for their next steps of development. Subsequently, we suggest several potential candidate top cells for Si-based tandem devices, such as Sb2S3, Se, CdSe, and Cu2O. These materials have great potential for the development of high-performance and low-cost Si-based tandem solar cells in the future.
引用
收藏
页码:246 / 255
页数:10
相关论文
共 77 条
[1]  
[Anonymous], 2019, PHOT REP, P21
[2]  
[Anonymous], 2019, BP STAT REV WORLD EN, P51
[3]  
Bagheri B, 2019, IEEE PHOT SPEC CONF, P1822, DOI [10.1109/pvsc40753.2019.8980799, 10.1109/PVSC40753.2019.8980799]
[4]   Monocrystalline 1.7-eV-Bandgap MgCdTe Solar Cell With 11.2% Efficiency [J].
Becker, Jacob J. ;
Campbell, Calli M. ;
Tsai, Cheng-Ying ;
Zhao, Yuan ;
Lassise, Maxwell ;
Zhao, Xin-Hao ;
Boccard, Mathieu ;
Holman, Zachary C. ;
Zhang, Yong-Hang .
IEEE JOURNAL OF PHOTOVOLTAICS, 2018, 8 (02) :581-586
[5]   Past, present and future of the thin film CdTe/CdS solar cells [J].
Bosio, A. ;
Rosa, G. ;
Romeo, N. .
SOLAR ENERGY, 2018, 175 :31-43
[6]   Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method [J].
Bremner, S. P. ;
Levy, M. Y. ;
Honsberg, C. B. .
PROGRESS IN PHOTOVOLTAICS, 2008, 16 (03) :225-233
[7]   Rotational design of charge carrier transport layers for optimal antimony trisulfide solar cells and its integration in tandem devices [J].
Cao, Yu ;
Zhu, Xinyun ;
Jiang, Jiahao ;
Liu, Chaoying ;
Zhou, Jing ;
Ni, Jian ;
Zhang, Jianjun ;
Pang, Jinbo .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 206
[8]   III-V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration [J].
Cariou, Romain ;
Benick, Jan ;
Feldmann, Frank ;
Hohn, Oliver ;
Hauser, Hubert ;
Beutel, Paul ;
Razek, Nasser ;
Wimplinger, Markus ;
Blasi, Benedikt ;
Lackner, David ;
Hermle, Martin ;
Siefer, Gerald ;
Glunz, Stefan W. ;
Bett, Andreas W. ;
Dimroth, Frank .
NATURE ENERGY, 2018, 3 (04) :326-333
[9]   Single-crystal II-VI on Si single-junction and tandem solar cells [J].
Carmody, M. ;
Mallick, S. ;
Margetis, J. ;
Kodama, R. ;
Biegala, T. ;
Xu, D. ;
Bechmann, P. ;
Garland, J. W. ;
Sivananthan, S. .
APPLIED PHYSICS LETTERS, 2010, 96 (15)
[10]   Stability issues pertaining large area perovskite and dye-sensitized solar cells and modules [J].
Castro-Hermosa, S. ;
Yadav, S. K. ;
Vesce, L. ;
Guidobaldi, A. ;
Reale, A. ;
Di Carlo, A. ;
Brown, T. M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (03)