On Strongly Quasiconvex Functions: Existence Results and Proximal Point Algorithms

被引:23
作者
Lara, F. [1 ]
机构
[1] Univ Tarapaca, Fac Ciencias, Dept Matemat, Arica, Chile
关键词
Nonconvex optimization; Nonsmooth optimization; Strongly quasiconvex functions; Existence of solutions; Proximal point algorithms; SUBGRADIENT METHOD; SETS; OPTIMIZATION; MINIMIZATION; CONVERGENCE; DUALITY;
D O I
10.1007/s10957-021-01996-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We prove that every strongly quasiconvex function is 2-supercoercive (in particular, coercive). Furthermore, we investigate the usual properties of proximal operators for strongly quasiconvex functions. In particular, we prove that the set of fixed points of the proximal operator coincides with the unique minimizer of a lower semicontinuous strongly quasiconvex function. As a consequence, we implement the proximal point algorithm for finding the unique solution of the minimization problem of a strongly quasiconvex function by using a positive sequence of parameters bounded away from 0 and, in particular, we revisit the general quasiconvex case. Moreover, a new characterization for convex functions is derived from this analysis. Finally, an application for a strongly quasiconvex function which is neither convex nor differentiable nor locally Lipschitz continuous is provided.
引用
收藏
页码:891 / 911
页数:21
相关论文
共 38 条
[1]  
[Anonymous], 2003, SPRINGER MG MATH
[2]   Accelerating the DC algorithm for smooth functions [J].
Aragon Artacho, Francisco J. ;
Fleming, Ronan M. T. ;
Vuong, Phan T. .
MATHEMATICAL PROGRAMMING, 2018, 169 (01) :95-118
[3]  
Arjevani Y, 2016, J MACH LEARN RES, V17
[4]   ROBUST ACCELERATED GRADIENT METHODS FOR SMOOTH STRONGLY CONVEX FUNCTIONS [J].
Aybat, Necdet Serhat ;
Fallah, Alireza ;
Gurbuzbalaban, Mert ;
Ozdaglar, Asuman .
SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) :717-751
[5]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[6]  
Beck A., 2017, MOS-Siam Series on Optimization, V25, DOI 10.11371.9781611974997
[7]   Interior Proximal Algorithm for Quasiconvex Programming Problems and Variational Inequalities with Linear Constraints [J].
Brito, Arnaldo S. ;
da Cruz Neto, J. X. ;
Lopes, Jurandir O. ;
Roberto Oliveira, P. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 154 (01) :217-234
[8]  
Cambini R., 2003, INT J MATH SCI, V2, P83
[9]   Proximal methods for cohypomonotone operators [J].
Combettes, PL ;
Pennanen, T .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2004, 43 (02) :731-742
[10]  
Crouzeix J.P., 1982, CONVEX ANAL OPTIMIZA, V57, P18