A NEW 3D AUTOMATIC SEGMENTATION FRAMEWORK FOR ACCURATE SEGMENTATION OF PROSTATE FROM DCE-MRI

被引:0
作者
Firjani, A. [1 ]
Elnakib, A. [1 ]
Khalifa, F. [1 ]
Gimel'farb, G. [2 ]
El-Ghar, M. Abo [3 ]
Suri, J. [4 ]
Elmaghraby, A. [5 ]
El-Baz, A. [1 ]
机构
[1] Univ Louisville, Dept Bioengn, BioImaging Lab, Louisville, KY 40292 USA
[2] Univ Auckland, Dept Comp Sci, Auckland, New Zealand
[3] Univ Mansoura, Urol & Nephrol Dept, Mansoura, Egypt
[4] Univ Colorado, Biomed Technol Inc, CTO, Denver, CO 80202 USA
[5] Univ Louisville, Dept Comp Sci & Comp Engn, Louisville, KY 40292 USA
来源
2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO | 2011年
关键词
Prostate cancer; 3D Markov-Gibbs random field; shape prior; and dynamic contrast enhancement MRI; MODEL;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Prostate segmentation is an essential step in developing any noninvasive Computer-Assisted Diagnostic (CAD) system for the early diagnosis of prostate cancer using Magnetic Resonance Images (MRI). In this paper, a novel framework for 3D segmentation of the prostate region from Dynamic Contrast Enhancement MRI (DCE-MRI) is proposed. The framework is based on Maximum A Posteriori (MAP) estimate of a new log-likelihood function that consists of : (i) 1st-order visual appearance descriptors of the DCE-MRI, (ii) a 3D spatially rotation-variant 2nd-order homogeneity descriptor, and (iii) a 3D prostate shape descriptor. The shape prior is learned from the co-aligned 3D segmented prostate data. The visual appearances of the object and its background are described with marginal gray-level distributions obtained by separating their mixture over prostate data. The spatial interactions between the prostate voxels are modeled by a 3D 2nd-order rotation-variant Markov-Gibbs Random Field (MGRF) of object/background labels with analytically estimated potentials. Experiments with in vivo prostate DCE-MRI confirm the robustness and accuracy of the proposed approach.
引用
收藏
页码:1476 / 1479
页数:4
相关论文
共 13 条
[1]  
[Anonymous], P IEEE INT C IM PROC
[2]  
[Anonymous], P MED IM UND AN
[3]  
BESAG J, 1986, J R STAT SOC B, V48, P259
[4]  
Firjany A, 2010, LECT NOTES COMPUT SC, V6367, P121, DOI 10.1007/978-3-642-15989-3_14
[5]   Cancer statistics, 2007 [J].
Jemal, Ahmedin ;
Siegel, Rebecca ;
Ward, Elizabeth ;
Murray, Taylor ;
Xu, Jiaquan ;
Thun, Michael J. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2007, 57 (01) :43-66
[6]  
Jones SE, 2000, HUM BRAIN MAPP, V11, P12, DOI 10.1002/1097-0193(200009)11:1<12::AID-HBM20>3.0.CO
[7]  
2-K
[8]  
Klein S., 2007, P ISBI, P1300
[9]   Automated segmentation of the prostate in 3D MR images using a probabilistic atlas and a spatially constrained deformable model [J].
Martin, Sebastien ;
Troccaz, Jocelyne ;
Daanen, Vincent .
MEDICAL PHYSICS, 2010, 37 (04) :1579-1590
[10]   Segmentation of prostate boundaries from ultrasound images using statistical shape model [J].
Shen, DG ;
Zhan, YQ ;
Davatzikos, C .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2003, 22 (04) :539-551