Artificial Intelligence in Acute Kidney Injury Risk Prediction

被引:50
作者
Gameiro, Joana [1 ]
Branco, Tiago [2 ]
Lopes, Jose Antonio [1 ]
机构
[1] Ctr Hosp Lisboa Norte, Dept Med, Div Nephrol & Renal Transplantat, Av Prof Egas Moniz, P-1649035 Lisbon, Portugal
[2] Ctr Hosp Lisboa Norte, Dept Med, Av Prof Egas Moniz, P-1649035 Lisbon, Portugal
关键词
acute kidney injury; risk prediction; artificial intelligence; ACUTE-RENAL-FAILURE; CRITICALLY-ILL PATIENTS; GELATINASE-ASSOCIATED LIPOCALIN; RED-CELL STORAGE; CARDIAC-SURGERY; INDEPENDENT PREDICTOR; GLUCOSE-LEVELS; URIC-ACID; MORTALITY; AKI;
D O I
10.3390/jcm9030678
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Acute kidney injury (AKI) is a frequent complication in hospitalized patients, which is associated with worse short and long-term outcomes. It is crucial to develop methods to identify patients at risk for AKI and to diagnose subclinical AKI in order to improve patient outcomes. The advances in clinical informatics and the increasing availability of electronic medical records have allowed for the development of artificial intelligence predictive models of risk estimation in AKI. In this review, we discussed the progress of AKI risk prediction from risk scores to electronic alerts to machine learning methods.
引用
收藏
页数:17
相关论文
共 119 条
[81]   Are There Modifiable Risk Factors to Improve AKI? [J].
Nie, Sasa ;
Tang, Li ;
Zhang, Weiguang ;
Feng, Zhe ;
Chen, Xiangmei .
BIOMED RESEARCH INTERNATIONAL, 2017, 2017
[82]   Clinical review: Biomarkers of acute kidney injury: where are we now? [J].
Ostermann, Marlies ;
Philips, Barbara J. ;
Forni, Lui G. .
CRITICAL CARE, 2012, 16 (05)
[83]   Acute kidney injury prediction following elective cardiac surgery: AKICS Score [J].
Palomba, H. ;
de Castro, I. ;
Neto, A. L. C. ;
Lage, S. ;
Yu, L. .
KIDNEY INTERNATIONAL, 2007, 72 (05) :624-631
[84]   Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery [J].
Parikh, C. R. ;
Mishra, J. ;
Thiessen-Philbrook, H. ;
Dursun, B. ;
Ma, Q. ;
Kelly, C. ;
Dent, C. ;
Devarajan, P. ;
Edelstein, C. L. .
KIDNEY INTERNATIONAL, 2006, 70 (01) :199-203
[85]   Acute kidney injury prediction models: current concepts and future strategies [J].
Park, Sehoon ;
Lee, Hajeong .
CURRENT OPINION IN NEPHROLOGY AND HYPERTENSION, 2019, 28 (06) :552-559
[86]   Simple Postoperative AKI Risk (SPARK) Classification before Noncardiac Surgery: A Prediction Index Development Study with External Validation [J].
Park, Sehoon ;
Cho, Hyunjeong ;
Park, Seokwoo ;
Lee, Soojin ;
Kim, Kwangsoo ;
Yoon, Hyung Jin ;
Park, Jiwon ;
Choi, Yunhee ;
Lee, Suehyun ;
Kim, Ju Han ;
Kim, Sejoong ;
Chin, Ho Jun ;
Kim, Dong Ki ;
Joo, Kwon Wook ;
Kim, Yon Su ;
Lee, Hajeong .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2019, 30 (01) :170-181
[87]  
Parreco J, 2019, AM SURGEON, V85, P725
[88]   Early Recognition of Burn- and Trauma-Related Acute Kidney Injury: A Pilot Comparison of Machine Learning Techniques [J].
Rashidi, Hooman H. ;
Sen, Soman ;
Palmieri, Tina L. ;
Blackmon, Thomas ;
Wajda, Jeffery ;
Tran, Nam K. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[89]   Deep learning [J].
Rusk, Nicole .
NATURE METHODS, 2016, 13 (01) :35-35
[90]   Urinalysis is more specific and urinary neutrophil gelatinase-associated lipocalin is more sensitive for early detection of acute kidney injury [J].
Schinstock, Carrie A. ;
Semret, Merfake H. ;
Wagner, Steven J. ;
Borland, Timothy M. ;
Bryant, Sandra C. ;
Kashani, Kianoush B. ;
Larson, Timothy S. ;
Lieske, John C. .
NEPHROLOGY DIALYSIS TRANSPLANTATION, 2013, 28 (05) :1175-1185