Power Series Solutions of Non-linear q-Difference Equations and the Newton-Puiseux Polygon

被引:4
作者
Cano, J. [1 ]
Fortuny Ayuso, P. [2 ]
机构
[1] Univ Valladolid, Valladolid, Spain
[2] Univ Oviedo, Oviedo, Spain
关键词
39A13;
D O I
10.1007/s12346-022-00656-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Adapting the Newton-Puiseux Polygon process to nonlinear q-difference equations of any order and degree, we compute their power series solutions, study the properties of the set of exponents of the solutions and give a bound for their q-Gevrey order in terms of the order of the original equation.
引用
收藏
页数:31
相关论文
共 32 条
[1]   On the linear ordinary q-difference equation [J].
Adams, CR .
ANNALS OF MATHEMATICS, 1928, 30 :195-205
[2]  
[Anonymous], B AMS
[3]  
Barbe P, 2020, Arxiv, DOI arXiv:2006.09527
[4]  
Bezivin J-P, 1992, AEQUATIONES MATH, V43, P159, DOI [10.1007/BF01835698, DOI 10.1007/BF01835698]
[5]  
Bezivin Jean-Paul., 1992, COLLECT MATH, V43, P125
[6]  
Bezivin Jean-Paul., 1992, AEQUATIONES MATH, V44, P84, DOI DOI 10.1007/BF01834207
[7]  
CANO J., 1993, Analysis, V13, P103, DOI DOI 10.1524/ANLY.1993.13.12.103
[8]  
Cano J, 2009, ASTERISQUE, P61
[9]  
Christensen C., 1996, COLL MATH J, V27, P330, DOI DOI 10.1080/07468342.1996.11973804
[10]  
Della Dora J., 1997, ISSAC 97. Proceedings of the 1997 International Sympsoium on Symbolic and Algebraic Computation, P298, DOI 10.1145/258726.258817