Single-shot pixel super-resolution phase imaging by wavefront separation approach

被引:21
作者
Kocsis, Peter [1 ]
Shevkunov, Igor [1 ]
Katkovnik, Vladimir [1 ]
Rekola, Heikki [2 ]
Egiazarian, Karen [1 ]
机构
[1] Tampere Univ, Fac Informat Technol & Commun Sci, FI-33101 Tampere, Finland
[2] Univ Eastern Finland, Inst Photon, POB 111, FI-80101 Joensuu, Finland
基金
芬兰科学院;
关键词
RETRIEVAL; RECONSTRUCTION; MICROSCOPY; FIELD;
D O I
10.1364/OE.445218
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a novel approach for lensless single-shot phase retrieval, which provides pixel super-resolution phase imaging. The approach is based on a computational separation of carrying and object wavefronts. The imaging task is to reconstruct the object wavefront, while the carrying wavefront corrects the discrepancies between the computational model and physical elements of an optical system. To reconstruct the carrying wavefront, we do two preliminary tests as system calibration without an object. Essential for phase retrieval noise is suppressed by a combination of sparse- and deep learning-based filters. Robustness to discrepancies in computational models and pixel super-resolution of the proposed approach are shown in simulations and physical experiments. We report an experimental computational super-resolution of 2 mu m, which is 3.45x smaller than the resolution following from the Nyquist-Shannon sampling theorem for the used camera pixel size of 3.45 mu m. For phase bio-imaging, we provide Buccal Epithelial Cells reconstructed with a quality close to the quality of a digital holographic system with a 40x magnification objective. Furthermore, the single-shot advantage provides a possibility to record dynamic scenes, where the frame rate is limited only by the used camera. We provide amplitude-phase video clip of a moving alive single-celled eukaryote. (C) 2021 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:43662 / 43678
页数:17
相关论文
共 60 条
[1]  
[Anonymous], 2012, BIOMED OPT PRINC IMA
[2]   DiffuserCam: lensless single-exposure 3D imaging [J].
Antipa, Nick ;
Kuo, Grace ;
Heckel, Reinhard ;
Mildenhall, Ben ;
Bostan, Emrah ;
Ng, Ren ;
Waller, Laura .
OPTICA, 2018, 5 (01) :1-9
[3]   Determination of the Refractive Index of Dehydrated Cells by Means of Digital Holographic Microscopy [J].
Belashov, A. V. ;
Zhikhoreva, A. A. ;
Bespalov, V. G. ;
Vasyutinskii, O. S. ;
Zhilinskaya, N. T. ;
Novik, V. I. ;
Semenova, I. V. .
TECHNICAL PHYSICS LETTERS, 2017, 43 (10) :932-935
[4]   PhlatCam: Designed Phase-Mask Based Thin Lensless Camera [J].
Boominathan, Vivek ;
Adams, Jesse K. ;
Robinson, Jacob T. ;
Veeraraghavan, Ashok .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (07) :1618-1629
[5]   Deep phase decoder: self-calibrating phase microscopy with an untrained deep neural network [J].
Bostan, Emrah ;
Heckel, Reinhard ;
Chen, Michael ;
Kellman, Michael ;
Waller, Laura .
OPTICA, 2020, 7 (06) :559-562
[6]   Quantitative phase imaging trends in biomedical applications [J].
Cacace, Teresa ;
Bianco, Vittorio ;
Ferraro, Pietro .
OPTICS AND LASERS IN ENGINEERING, 2020, 135
[7]   Extreme ultraviolet lensless imaging without object support through rotational diversity in diffractive shearing interferometry [J].
de Beurs, A. C. C. ;
Liu, X. ;
Jansen, G. S. M. ;
Konijnenberg, A. P. ;
Coene, W. M. J. ;
Eikema, K. S. E. ;
Witte, S. .
OPTICS EXPRESS, 2020, 28 (04) :5257-5266
[8]   Characterization of an imaging multimode optical fiber using a digital micro-mirror device based single-beam system [J].
Deng, Liang ;
Yan, Joseph D. ;
Elson, Daniel S. ;
Su, Lei .
OPTICS EXPRESS, 2018, 26 (14) :18436-18447
[9]   Single shot multi-wavelength phase retrieval with coherent modulation imaging [J].
Dong, Xue ;
Pan, Xingchen ;
Liu, Cheng ;
Zhu, Jianqiang .
OPTICS LETTERS, 2018, 43 (08) :1762-1765
[10]  
Eguiazarian K. O ., 2021, OPT ENG, V60