Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: Corrosion inhibition and passive oxide effects

被引:229
作者
Melitas, N [1 ]
Chuffe-Moscoso, O [1 ]
Farrell, J [1 ]
机构
[1] Univ Arizona, Dept Chem & Environm Engn, Tucson, AZ 85721 USA
关键词
D O I
10.1021/es001923x
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Permeable reactive barriers containing zerovalent iron are being increasingly employed for in situ remediation of groundwater contaminated with redox active metals and chlorinated organic compounds. This research investigated the effect of chromate concentration on its removal from solution by zerovalent iron. Removal rates of aqueous Cr(VI) by iron wires were measured in batch experiments for initial chromium concentrations ranging from 100 to 10 000 mug/L. Chromate removal was also measured in columns packed with zerovalent iron filings over this same concentration range. Electrochemical measurements were made to determine the free corrosion potential and corrosion rate of the iron reactants. In both the batch and column reactors, absolute rates of chromium removal declined with increasing chromate concentration. Corrosion current measurements indicated that the rate of iron corrosion decreased with increasing Cr(VI) concentrations between 0 and 5000 mug/L. At a Cr(VI) concentration of 10 000 mug/L, Tafel polarization diagrams showed that chromium removal was affected by its diffusion rate through a passivating oxide film and by the ability of iron to release Fe2+ at anodic sites. In contrast, water reduction was not mass transfer limited, but chromium did decrease the exchange current for the hydrogen evolution reaction. Even at the most passivating concentration of 10 000 mug/L, effluent Cr(VI) concentrations in the column reactors reached a steady state, indicating that passivation had also reached a steady state. Although chromate contributes to iron surface passivation, the removal rates are still sufficiently fast for in situ iron barriers to be effective for Cr(VI) removal at most environmentally relevant concentrations.
引用
收藏
页码:3948 / 3953
页数:6
相关论文
共 27 条
[1]   BATCH EXPERIMENTS CHARACTERIZING THE REDUCTION OF CR(VI) USING SUBOXIC MATERIAL FROM A MILDLY REDUCING SAND AND GRAVEL AQUIFER [J].
ANDERSON, LD ;
KENT, DB ;
DAVIS, JA .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1994, 28 (01) :178-185
[2]   Immobilization of chromate from coal fly ash leachate using an attenuating barrier containing zero-valent iron [J].
Astrup, T ;
Stipp, SLS ;
Christensen, TH .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (19) :4163-4168
[3]   Photoeffects on the reduction of carbon tetrachloride by zero-valent iron [J].
Balko, BA ;
Tratnyek, PG .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (08) :1459-1465
[4]  
BARD AJ, 1980, ELECTROCHEMICAL METH
[5]   Treatment of inorganic contaminants using permeable reactive barriers [J].
Blowes, DW ;
Ptacek, CJ ;
Benner, SG ;
McRae, CWT ;
Bennett, TA ;
Puls, RW .
JOURNAL OF CONTAMINANT HYDROLOGY, 2000, 45 (1-2) :123-137
[6]  
BLOWES DW, EPA600R9909
[7]  
Bockris J. O. M., 1970, MODERN ELECTROCHEMIS
[8]   Influence of chlorinated solvents on polarization and corrosion behaviour of iron in borate buffer [J].
Bonin, PML ;
Odziemkowski, MS ;
Gillham, RW .
CORROSION SCIENCE, 1998, 40 (08) :1391-1409
[9]   KINETICS OF THE HYDROGEN EVOLUTION REACTION ON MILD-STEEL AND NICKEL CATHODES IN CONCENTRATED SODIUM-HYDROXIDE SOLUTIONS [J].
BROWN, AP ;
KRUMPELT, M ;
LOUTFY, RO ;
YAO, NP .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1982, 129 (11) :2481-2487
[10]   Influence of organic ligands on chromium(VI) reduction by iron(II) [J].
Buerge, IJ ;
Hug, SJ .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1998, 32 (14) :2092-2099