Speeding-up the decision making of a learning agent using an ion trap quantum processor

被引:29
作者
Sriarunothai, Th [1 ]
Woelk, S. [1 ,2 ]
Giri, G. S. [1 ,5 ]
Friis, N. [2 ,6 ]
Dunjko, V [2 ,3 ,7 ]
Briegel, H. J. [2 ,4 ]
Wunderlich, Ch [1 ]
机构
[1] Univ Siegen, Sch Sci & Technol, Dept Phys, D-57068 Siegen, Germany
[2] Univ Innsbruck, Inst Theoret Phys, Technikerstr 21a, A-6020 Innsbruck, Austria
[3] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[4] Univ Konstanz, Dept Philosophy, D-78457 Constance, Germany
[5] Heinrich Heine Univ Dusseldorf, Inst Expt Phys, D-40225 Dusseldorf, Germany
[6] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, Boltzmanngasse 3, A-1090 Vienna, Austria
[7] Leiden Univ, LIACS, Niels Bohrweg 1, NL-2333 CA Leiden, Netherlands
基金
奥地利科学基金会;
关键词
machine learning; reinforcement learning; quantum computing; trapped ions; quadratic speed-up algorithm;
D O I
10.1088/2058-9565/aaef5e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report a proof-of-principle experimental demonstration of the quantum speed-up for learning agents utilizing a small-scale quantum information processor based on radio frequency-driven trapped ions. The decision-making process of a quantum learning agent within the projective simulation paradigm for machine learning is implemented in a system of two qubits. The latter are realized using hyperfine states of two frequency-addressed atomic ions exposed to a static magnetic field gradient. We show that the deliberation time of this quantum learning agent is quadratically improved with respect to comparable classical learning agents. The performance of this quantum-enhanced learning agent highlights the potential of scalable quantum processors taking advantage of machine learning.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Intelligent Decision Making in Autonomous Vehicles using Cognition Aided Reinforcement Learning
    Rathore, Heena
    Bhadauria, Vikram
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 524 - 529
  • [32] Comorbidity diagnosis using machine learning: Fuzzy decision-making approach
    Mukhlif, Dheyauldeen M.
    Abd, Dhafar Hamed
    Ejbali, Ridha
    Alimi, Adel M.
    Mahdi, Mohammed Fadhil
    Hussain, Abir Jaafar
    JOURNAL OF INTELLIGENT SYSTEMS, 2025, 34 (01)
  • [33] HMM for discovering decision-making dynamics using reinforcement learning experiments
    Guo, Xingche
    Zeng, Donglin
    Wang, Yuanjia
    BIOSTATISTICS, 2024, 26 (01)
  • [34] Towards Multi-agent Reinforcement Learning using Quantum Boltzmann Machines
    Mueller, Tobias
    Roch, Christoph
    Schmid, Kyrill
    Altmann, Philipp
    ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 1, 2022, : 121 - 130
  • [35] Learning data-driven decision-making policies in multi-agent environments for autonomous systems
    Hook, Joosep
    El-Sedky, Seif
    De Silva, Varuna
    Kondoz, Ahmet
    COGNITIVE SYSTEMS RESEARCH, 2021, 65 : 40 - 49
  • [36] Real-time Machine Learning Prediction of an Agent-Based Model for Urban Decision-making
    Zhang, Yan
    Grignard, Arnaud
    Lyons, Kevin
    Aubuchon, Alexander
    Larson, Kent
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 2171 - 2173
  • [37] Collaborative Decision-making in Heterogeneous UAV Swarms based on Multi-agent Deep Reinforcement Learning
    Yang, Feng
    Li, Zhi
    Fu, Jiahao
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 2138 - 2145
  • [38] Improved decision making in multiagent system for diagnostic application using cooperative learning algorithms
    Vidhate D.A.
    Kulkarni P.
    International Journal of Information Technology, 2018, 10 (2) : 201 - 209
  • [39] Modelling and interpreting pre-evacuation decision-making using machine learning
    Zhao, Xilei
    Lovreglio, Ruggiero
    Nilsson, Daniel
    AUTOMATION IN CONSTRUCTION, 2020, 113
  • [40] Decision-Making Techniques for Credit Resource Management Using Machine Learning and Optimization
    Orlova, Ekaterina, V
    INFORMATION, 2020, 11 (03)