Speeding-up the decision making of a learning agent using an ion trap quantum processor

被引:30
作者
Sriarunothai, Th [1 ]
Woelk, S. [1 ,2 ]
Giri, G. S. [1 ,5 ]
Friis, N. [2 ,6 ]
Dunjko, V [2 ,3 ,7 ]
Briegel, H. J. [2 ,4 ]
Wunderlich, Ch [1 ]
机构
[1] Univ Siegen, Sch Sci & Technol, Dept Phys, D-57068 Siegen, Germany
[2] Univ Innsbruck, Inst Theoret Phys, Technikerstr 21a, A-6020 Innsbruck, Austria
[3] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[4] Univ Konstanz, Dept Philosophy, D-78457 Constance, Germany
[5] Heinrich Heine Univ Dusseldorf, Inst Expt Phys, D-40225 Dusseldorf, Germany
[6] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, Boltzmanngasse 3, A-1090 Vienna, Austria
[7] Leiden Univ, LIACS, Niels Bohrweg 1, NL-2333 CA Leiden, Netherlands
基金
奥地利科学基金会;
关键词
machine learning; reinforcement learning; quantum computing; trapped ions; quadratic speed-up algorithm;
D O I
10.1088/2058-9565/aaef5e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report a proof-of-principle experimental demonstration of the quantum speed-up for learning agents utilizing a small-scale quantum information processor based on radio frequency-driven trapped ions. The decision-making process of a quantum learning agent within the projective simulation paradigm for machine learning is implemented in a system of two qubits. The latter are realized using hyperfine states of two frequency-addressed atomic ions exposed to a static magnetic field gradient. We show that the deliberation time of this quantum learning agent is quadratically improved with respect to comparable classical learning agents. The performance of this quantum-enhanced learning agent highlights the potential of scalable quantum processors taking advantage of machine learning.
引用
收藏
页数:13
相关论文
共 51 条
[1]   Supervised Quantum Learning without Measurements [J].
Alvarez-Rodriguez, Unai ;
Lamata, Lucas ;
Escandell-Montero, Pablo ;
Martin-Guerrero, Jose D. ;
Solano, Enrique .
SCIENTIFIC REPORTS, 2017, 7
[2]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[3]   Implementation of Grover's quantum search algorithm in a scalable system [J].
Brickman, KA ;
Haljan, PC ;
Lee, PJ ;
Acton, M ;
Deslauriers, L ;
Monroe, C .
PHYSICAL REVIEW A, 2005, 72 (05)
[4]   Projective simulation for artificial intelligence [J].
Briegel, Hans J. ;
De las Cuevas, Gemma .
SCIENTIFIC REPORTS, 2012, 2
[5]   Entanglement-Based Machine Learning on a Quantum Computer [J].
Cai, X. -D. ;
Wu, D. ;
Su, Z. -E. ;
Chen, M. -C. ;
Wang, X. -L. ;
Li, Li ;
Liu, N. -L. ;
Lu, C. -Y. ;
Pan, J. -W. .
PHYSICAL REVIEW LETTERS, 2015, 114 (11)
[6]  
Crawford D, 2018, QUANTUM INF COMPUT, V18, P51
[7]   Quantum Speedup for Active Learning Agents [J].
Davide Paparo, Giuseppe ;
Dunjko, Vedran ;
Makmal, Adi ;
Angel Martin-Delgado, Miguel ;
Briegel, Hans J. .
PHYSICAL REVIEW X, 2014, 4 (03)
[8]   Demonstration of a small programmable quantum computer with atomic qubits [J].
Debnath, S. ;
Linke, N. M. ;
Figgatt, C. ;
Landsman, K. A. ;
Wright, K. ;
Monroe, C. .
NATURE, 2016, 536 (7614) :63-+
[9]   Demonstration of two-qubit algorithms with a superconducting quantum processor [J].
DiCarlo, L. ;
Chow, J. M. ;
Gambetta, J. M. ;
Bishop, Lev S. ;
Johnson, B. R. ;
Schuster, D. I. ;
Majer, J. ;
Blais, A. ;
Frunzio, L. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
NATURE, 2009, 460 (7252) :240-244
[10]   Quantum-enhanced deliberation of learning agents using trapped ions [J].
Dunjko, V. ;
Friis, N. ;
Briegel, H. J. .
NEW JOURNAL OF PHYSICS, 2015, 17