Speeding-up the decision making of a learning agent using an ion trap quantum processor

被引:28
|
作者
Sriarunothai, Th [1 ]
Woelk, S. [1 ,2 ]
Giri, G. S. [1 ,5 ]
Friis, N. [2 ,6 ]
Dunjko, V [2 ,3 ,7 ]
Briegel, H. J. [2 ,4 ]
Wunderlich, Ch [1 ]
机构
[1] Univ Siegen, Sch Sci & Technol, Dept Phys, D-57068 Siegen, Germany
[2] Univ Innsbruck, Inst Theoret Phys, Technikerstr 21a, A-6020 Innsbruck, Austria
[3] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[4] Univ Konstanz, Dept Philosophy, D-78457 Constance, Germany
[5] Heinrich Heine Univ Dusseldorf, Inst Expt Phys, D-40225 Dusseldorf, Germany
[6] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, Boltzmanngasse 3, A-1090 Vienna, Austria
[7] Leiden Univ, LIACS, Niels Bohrweg 1, NL-2333 CA Leiden, Netherlands
基金
奥地利科学基金会;
关键词
machine learning; reinforcement learning; quantum computing; trapped ions; quadratic speed-up algorithm;
D O I
10.1088/2058-9565/aaef5e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report a proof-of-principle experimental demonstration of the quantum speed-up for learning agents utilizing a small-scale quantum information processor based on radio frequency-driven trapped ions. The decision-making process of a quantum learning agent within the projective simulation paradigm for machine learning is implemented in a system of two qubits. The latter are realized using hyperfine states of two frequency-addressed atomic ions exposed to a static magnetic field gradient. We show that the deliberation time of this quantum learning agent is quadratically improved with respect to comparable classical learning agents. The performance of this quantum-enhanced learning agent highlights the potential of scalable quantum processors taking advantage of machine learning.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] RESPRECT: Speeding-up Multi-Fingered Grasping With Residual Reinforcement Learning
    Ceola, Federico
    Rosasco, Lorenzo
    Natale, Lorenzo
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (04) : 3045 - 3052
  • [2] Ion trap quantum computing using integrated photonics
    Mehta, Karan
    Vasquez, Alfredo Ricci
    Mordini, Carmelo
    Beck, Gillenhaal
    Malinowski, Maciej
    Stadler, Martin
    Zhang, Chi
    Kienzler, Daniel
    Home, Jonathan
    INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XXVII, 2023, 12424
  • [3] Speeding-Up Action Learning in a Social Robot With Dyna-Q plus : A Bioinspired Probabilistic Model Approach
    Maroto-Gomez, Marcos
    Gonzalez, Rodrigo
    Castro-Gonzalez, Alvaro
    Malfaz, Maria
    Salichs, Miguel Angel
    IEEE ACCESS, 2021, 9 : 98381 - 98397
  • [4] Using Active Learning for Speeding up Calibration in Simulation Models
    Cevik, Mucahit
    Ergun, Mehmet Ali
    Stout, Natasha K.
    Trentham-Dietz, Amy
    Craven, Mark
    Alagoz, Oguzhan
    MEDICAL DECISION MAKING, 2016, 36 (05) : 581 - 593
  • [5] Speeding-Up Emerging Device Development Cycles by Generating Models via Machine-Learning directly from Electrical Measurements
    Trommer, J.
    Reuter, M.
    Bhattacharjee, N.
    He, Y.
    Sessi, V
    Drescher, M.
    Zier, M.
    Simon, M.
    Ruttloff, K.
    Li, K.
    Zeun, A.
    Seidel, A-S
    Metze, C.
    Grothe, M.
    Jansen, S.
    Galderisi, G.
    Havel, V
    Slesazeck, S.
    Hoentschel, J.
    Hofmann, K.
    Mikolajick, T.
    2024 50TH IEEE EUROPEAN SOLID-STATE ELECTRONICS RESEARCH CONFERENCE, ESSERC 2024, 2024, : 217 - 220
  • [6] Research on Decision-Making in Emotional Agent Based on Reinforcement Learning
    Feng Chao
    Chen Lin
    Jiang Kui
    Wei Zhonglin
    Zhai Bing
    2016 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2016, : 1191 - 1194
  • [7] MACHINE LEARNING AND DECISION MAKING IN AUTONOMOUS MOBILE SENSOR AGENT FRAMEWORK
    Markova, Vanya
    INTERNATIONAL JOURNAL ON INFORMATION TECHNOLOGIES AND SECURITY, 2013, 5 (04): : 27 - 36
  • [8] Speeding Up Affordance Learning for Tool Use, Using Proprioceptive and Kinesthetic Inputs
    Nguyen, Khuong N.
    Yoo, Jaewook
    Choe, Yoonsuck
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [9] Decision Making for Multi-Robot Fixture Planning Using Multi-Agent Reinforcement Learning
    Canzini, Ethan
    Auledas-Noguera, Marc
    Pope, Simon
    Tiwari, Ashutosh
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2025, 22 : 5578 - 5589
  • [10] Multi-agent Reinforcement Learning Using Simulated Quantum Annealing
    Neumann, Niels M. P.
    de Heer, Paolo B. U. L.
    Chiscop, Irina
    Phillipson, Frank
    COMPUTATIONAL SCIENCE - ICCS 2020, PT VI, 2020, 12142 : 562 - 575