Fast and slow decay solutions for supercritical elliptic problems in exterior domains

被引:42
作者
Davila, Juan [2 ,3 ]
del Pino, Manuel [2 ,3 ]
Musso, Monica [4 ,5 ]
Wei, Juncheng [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[2] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[3] Univ Chile, CMM, Santiago, Chile
[4] Pontificia Univ Catolica Chile, Dept Matemat, Macul 4860, Chile
[5] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
D O I
10.1007/s00526-007-0154-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the elliptic problem Delta u + u(p) = 0, u > 0 in an exterior domain, Omega = R(N)\D under zero Dirichlet and vanishing conditions, where D is smooth and bounded in R(N), N >= 3, and p is supercritical, namely p > N+2/N-2. We prove that this problem has infinitely many solutions with slow decay O(vertical bar x vertical bar(-2/p-1)) at infinity. In addition, a solution with fast decay O(vertical bar x vertical bar(2- N)) exists if p is close enough from above to the critical exponent.
引用
收藏
页码:453 / 480
页数:28
相关论文
共 18 条
[1]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[2]   MINIMAL-SURFACES WITH ISOLATED SINGULARITIES [J].
CAFFARELLI, L ;
HARDT, R ;
SIMON, L .
MANUSCRIPTA MATHEMATICA, 1984, 48 (1-3) :1-18
[3]  
CORON JM, 1984, CR ACAD SCI I-MATH, V299, P209
[4]   The supercritical Lane-Emden-Fowler equation in exterior domains [J].
Davila, Juan ;
del Pino, Manuel ;
Muss, Monica .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1225-1243
[5]   Standing waves for supercritical nonlinear Schrodinger equations [J].
Davila, Juan ;
del Pino, Manuel ;
Musso, Monica ;
Wei, Juncheng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 236 (01) :164-198
[6]   Multi-peak solutions for super-critical elliptic problems in domains with small holes [J].
del Pino, M ;
Felmer, P ;
Musso, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 182 (02) :511-540
[7]   Two-bubble solutions in the super-critical Bahri-Coron's problem [J].
del Pino, M ;
Felmer, P ;
Musso, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 16 (02) :113-145
[8]  
Fowler R.H., 1931, Quart. J. of Math., V1, P259, DOI 10.1093/qmath/os-2.1.259
[9]   Bubble towers for supercritical semilinear elliptic equations [J].
Ge, YX ;
Jing, RH ;
Pacard, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 221 (02) :251-302
[10]   ON THE STABILITY AND INSTABILITY OF POSITIVE STEADY-STATES OF A SEMILINEAR HEAT-EQUATION IN RN [J].
GUI, CF ;
NI, WM ;
WANG, XF .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (09) :1153-1181