The effects of temporal delays in a model for a food-limited, diffusing population

被引:25
作者
Davidson, FA [1 ]
Gourley, SA
机构
[1] Univ Dundee, Dept Math, Dundee DD1 4HN, Scotland
[2] Univ Surrey, Dept Math & Stat, Guildford GU2 5XH, Surrey, England
基金
英国生物技术与生命科学研究理事会;
关键词
reaction-diffusion; delay; stability;
D O I
10.1006/jmaa.2001.7563
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an adaptation of the well-known logistic equation in mathematical ecology in which the population is assumed to diffuse and for which the average growth rate is a function of some specified delayed argument. Using a combination of analytical and numerical techniques, we investigate the existence, uniqueness, and asymptotic stability of the nonnegative steady states of this equation. (C) 2001 Academic Press.
引用
收藏
页码:633 / 648
页数:16
相关论文
共 13 条
[1]  
[Anonymous], 1989, GEOMETRIC THEORY SEM
[2]  
Crandal M.G., 1971, J. Funct. Anal, V8, P321, DOI 10.1016/0022-1236(71)90015-2
[3]   On diffusive population models with toxicants and time delays [J].
Feng, W ;
Lu, X .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 233 (01) :373-386
[4]  
Gilbarg D., 1997, ELLIPTIC PARTIAL DIF
[5]   ENVIRONMENTAL PERIODICITY AND TIME DELAYS IN A FOOD-LIMITED POPULATION-MODEL [J].
GOPALSAMY, K ;
KULENOVIC, MRS ;
LADAS, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 147 (02) :545-555
[6]  
Gopalsamy K., 1988, Appl. Anal, V31, P225, DOI DOI 10.1080/00036818808839826
[7]   UNIQUENESS OF POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC BOUNDARY-VALUE PROBLEMS [J].
HESS, P .
MATHEMATISCHE ZEITSCHRIFT, 1977, 154 (01) :17-18
[8]  
Kuang Y, 1993, Mathematics in Science and Engineering
[9]  
PAO CV, 1992, NONINEAR PARABOLIC E
[10]  
PIELOU E C, 1969, P286