Nature of Intrinsic Defects in Carbon Materials for Electrochemical Dechlorination of 1,2-Dichloroethane to Ethylene

被引:57
作者
Gan, Guoqiang [1 ]
Fan, Shiying [1 ]
Li, Xinyong [1 ]
Wang, Jing [1 ]
Bai, Chunpeng [1 ]
Guo, Xuecheng [1 ]
Tade, Moses [2 ]
Liu, Shaomin [2 ,3 ]
机构
[1] Dalian Univ Technol, State Key Lab Fine Chem, Key Lab Ind Ecol & Environm Engn MOE, Sch Environm Sci & Technol, Dalian 116024, Peoples R China
[2] Curtin Univ, Dept Chem Engn, Perth, WA 6845, Australia
[3] Beijing Univ Chem Technol, Coll Chem Engn, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon materials; intrinsic defects; electrochemical dechlorination; theoretical calculations; 1; 2-dichloroethane; OXYGEN REDUCTION; ACTIVE-SITES; GRAPHENE; ELECTROCATALYST; CATALYST; CO2;
D O I
10.1021/acscatal.1c03701
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon materials have been recognized as prospective catalysts for the electrocatalytic 1,2-dichloroethane (DCE) dechlorination reaction (DCEDR), which is an economical and environmentally friendly strategy for the control of DCE contamination and production of highly valuable ethylene. However, the precise nature of intrinsic defects (pentagon, heptagon, octagon, armchair edge, and zigzag edge) in carbon-based catalysts for the electrochemical DCEDR has not been reported to date. Herein, theoretical calculations demonstrated that pentagon site showed the lowest energy barrier of 0.12 eV, indicating a much higher electrochemical reactivity and ethylene selectivity of pentagon defect than those of others. The prediction results have been proved experimentally based on a series of defective carbon materials with definitive defect configurations. Therefore, intrinsic defects played a significant role in the electrocatalytic DCEDR and pentagon defect was responsible for the high performance of defective carbon catalysts. This work not only clarifies the nature of intrinsic defects in carbon materials for electrochemical DCEDR but also provides the design principles for the rational preparation of advanced carbon electrocatalysts. <comment>Superscript/Subscript Available</comment
引用
收藏
页码:14284 / 14292
页数:9
相关论文
共 39 条
[1]   Hydrodechlorination of 1,2-dichloroethane on supported AgPd catalysts [J].
Ball, Madelyn R. ;
Rivera-Dones, Keishla R. ;
Stangland, Eric ;
Mavrikakis, Manos ;
Dumesic, James A. .
JOURNAL OF CATALYSIS, 2019, 370 :241-250
[2]   Pyridinic-N-Doped Graphene Paper from Perforated Graphene Oxide for Efficient Oxygen Reduction [J].
Bang, Gyeong Sook ;
Shim, Gi Woong ;
Shin, Gwang Hyuk ;
Jung, Dae Yool ;
Park, Hamin ;
Hong, Won G. ;
Choi, Jinseong ;
Lee, Jaeseung ;
Choi, Sung-Yool .
ACS OMEGA, 2018, 3 (05) :5522-5530
[3]   Electroreduction of CO2 to CO on a Mesoporous Carbon Catalyst with Progressively Removed Nitrogen Moieties [J].
Daiyan, Rahman ;
Tan, Xin ;
Chen, Rui ;
Saputera, Wibawa Hendra ;
Tahini, Hassan A. ;
Lovell, Emma ;
Ng, Yun Hau ;
Smith, Sean C. ;
Dai, Liming ;
Lu, Xunyu ;
Amal, Rose .
ACS ENERGY LETTERS, 2018, 3 (09) :2292-2298
[4]   Active Sites in Single-Atom Fe-Nx-C Nanosheets for Selective Electrochemical Dechlorination of 1,2-Dichloroethane to Ethylene [J].
Gan, Guoqiang ;
Li, Xinyong ;
Wang, Liang ;
Fan, Shiying ;
Mu, Jincheng ;
Wang, Penglei ;
Chen, Guohua .
ACS NANO, 2020, 14 (08) :9929-9937
[5]   Identification of Catalytic Active Sites in Nitrogen-Doped Carbon for Electrocatalytic Dechlorination of 1,2-Dichloroethane [J].
Gan, Guoqiang ;
Li, Xinyong ;
Wang, Liang ;
Fan, Shiying ;
Li, Ji ;
Liang, Feng ;
Chen, Aicheng .
ACS CATALYSIS, 2019, 9 (12) :10931-10939
[6]   Photocatalytic activation of alkyl chlorides by assembly-promoted single electron transfer in microheterogeneous solutions [J].
Giedyk, Maciej ;
Narobe, Rok ;
Weiss, Sophia ;
Touraud, Didier ;
Kunz, Werner ;
Koenig, Burkhard .
NATURE CATALYSIS, 2020, 3 (01) :40-47
[7]   On-Surface Synthesis of Unsaturated Carbon Nanostructures with Regularly Fused Pentagon-Heptagon Pairs [J].
Hou, Ian Cheng-Yi ;
Sun, Qiang ;
Eimre, Kristjan ;
Di Giovannantonio, Marco ;
Urgel, Jose, I ;
Ruffieux, Pascal ;
Narita, Akimitsu ;
Fasel, Roman ;
Muellen, Klaus .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (23) :10291-10296
[8]   Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping [J].
Jia, Yi ;
Zhang, Longzhou ;
Zhuang, Linzhou ;
Liu, Hongli ;
Yan, Xuecheng ;
Wang, Xin ;
Liu, Jiandang ;
Wang, Jiancheng ;
Zheng, Yarong ;
Xiao, Zhaohui ;
Taran, Elena ;
Chen, Jun ;
Yang, Dongjiang ;
Zhu, Zhonghua ;
Wang, Shuangyin ;
Dai, Liming ;
Yao, Xiangdong .
NATURE CATALYSIS, 2019, 2 (08) :688-695
[9]   The Role of Defect Sites in Nanomaterials for Electrocatalytic Energy Conversion [J].
Jia, Yi ;
Jiang, Kun ;
Wang, Haotian ;
Yao, Xiangdong .
CHEM, 2019, 5 (06) :1371-1397
[10]   Enhanced Bonding of Pentagon-Heptagon Defects in Graphene to Metal Surfaces: Insights from the Adsorption of Azulene and Naphthalene to Pt(111) [J].
Klein, Benedikt P. ;
Harman, S. Elizabeth ;
Ruppenthal, Lukas ;
Ruehl, Griffin M. ;
Hall, Samuel J. ;
Carey, Spencer J. ;
Herritsch, Jan ;
Schmid, Martin ;
Maurer, Reinhard J. ;
Tonner, Ralf ;
Campbell, Charles T. ;
Gottfried, J. Michael .
CHEMISTRY OF MATERIALS, 2020, 32 (03) :1041-1053