A facile surface chemistry route to a stabilized lithium metal anode

被引:996
作者
Liang, Xiao [1 ,3 ]
Pang, Quan [1 ]
Kochetkov, Ivan R. [1 ]
Sempere, Marina Safont [2 ]
Huang, He [1 ]
Sun, Xiaoqi [1 ]
Nazar, Linda F. [1 ]
机构
[1] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada
[2] BASF SE, D-67056 Ludwigshafen, Germany
[3] Hunan Univ, Coll Chem & Chem Engn, Changsha 410006, Hunan, Peoples R China
来源
NATURE ENERGY | 2017年 / 2卷 / 09期
基金
加拿大自然科学与工程研究理事会;
关键词
DENDRITE GROWTH; ALLOY; ELECTRODES; LIQUID; LAYER; ELECTROLYTES; DEPOSITION; BATTERIES;
D O I
10.1038/nenergy.2017.119
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium metal is a highly desirable anode for lithium rechargeable batteries, having the highest theoretical specific capacity and lowest electrochemical potential of all material candidates. Its most notable problem is dendritic growth upon Li plating, which is a major safety concern and exacerbates reactivity with the electrolyte. Here we report that Li-rich composite alloy films synthesized in situ on lithium by a simple and low-cost methodology effectively prevent dendrite growth. This is attributed to the synergy of fast lithium ion migration through Li-rich ion conductive alloys coupled with an electronically insulating surface component. The protected lithium is stabilized to sustain electrodeposition over 700 cycles (1,400 h) of repeated plating/stripping at a practical current density of 2 mA cm(-2) and a 1,500 cycle-life is realized for a cell paired with a Li4Ti5O12 positive electrode. These findings open up a promising avenue to stabilize lithium metal with surface layers having targeted properties.
引用
收藏
页数:7
相关论文
共 44 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   POLYMER SOLID ELECTROLYTES - STABILITY DOMAIN [J].
ARMAND, MB ;
DUCLOT, MJ ;
RIGAUD, P .
SOLID STATE IONICS, 1981, 3-4 (AUG) :429-430
[3]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[4]   Attempts to improve the behavior of Li electrodes in rechargeable lithium batteries [J].
Aurbach, D ;
Zinigrad, E ;
Teller, H ;
Cohen, Y ;
Salitra, G ;
Yamin, H ;
Dan, P ;
Elster, E .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (10) :A1267-A1277
[5]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[6]   A soft, multilayered lithium-electrolyte interface [J].
Bucur, Claudiu B. ;
Lita, Adrian ;
Osada, Naoki ;
Muldoon, John .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (01) :112-116
[7]  
Busche MR, 2016, NAT CHEM, V8, P426, DOI [10.1038/NCHEM.2470, 10.1038/nchem.2470]
[8]  
Chen YH, 2013, NAT CHEM, V5, P489, DOI [10.1038/NCHEM.1646, 10.1038/nchem.1646]
[9]   Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism [J].
Ding, Fei ;
Xu, Wu ;
Graff, Gordon L. ;
Zhang, Jian ;
Sushko, Maria L. ;
Chen, Xilin ;
Shao, Yuyan ;
Engelhard, Mark H. ;
Nie, Zimin ;
Xiao, Jie ;
Liu, Xingjiang ;
Sushko, Peter V. ;
Liu, Jun ;
Zhang, Ji-Guang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (11) :4450-4456
[10]   Self-Diffusion in Solid Lithium [J].
Dologlou, E. .
GLASS PHYSICS AND CHEMISTRY, 2010, 36 (05) :570-574