Graph Theory Applied to Brain Network Analysis in Alzheimer's Disease

被引:0
作者
Dattola, Serena [1 ]
La Foresta, Fabio [1 ]
机构
[1] Mediterranea Univ Reggio Calabria, DICEAM Dept, Via Graziella Feo Vito, I-89060 Reggio Di Calabria, Italy
来源
INTELLIGENT DISTRIBUTED COMPUTING XIV | 2022年 / 1026卷
关键词
ELECTROMAGNETIC TOMOGRAPHY; EEG;
D O I
10.1007/978-3-030-96627-0_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Alzheimer's disease (AD) is an incurable brain disorder which affects especially elderly. Over the years, the analysis of the brain functional connectivity from EEG signals has been exploited for promoting an early diagnosis of AD. Graph theory provides helpful tools to describe complex brain networks. In this work, starting from High-Density EEGs, we estimated the functional connectivity by the Lagged Linear Connectivity (LLC) parameter, for 84 Regions of Interest (ROIs), and analyzed the brain networks properties for three groups of subjects: control subjects (CNT), Mild Cognitive Impairment patients (MCI) and AD patients. We computed three network parameters: the Clustering Coefficient, the Characteristic Path Length and the Randic Index. The results showed that the functional connectivity of MCI and even more of AD patients declines in comparison to healthy people. Moreover, the results deriving from the Randic Index about robustness of brain networks outperform those deriving from the Connection Density Index, commonly used for brain network analysis.
引用
收藏
页码:367 / 376
页数:10
相关论文
共 24 条
[1]  
[Anonymous], 2011, International Encyclopedia of Statistical Science, DOI DOI 10.1007/978-3-642-04898-2
[2]  
[Anonymous], 2014, RECENT ADV NEURAL NE
[3]   Small-world brain networks [J].
Bassett, Danielle Smith ;
Bullmore, Edward T. .
NEUROSCIENTIST, 2006, 12 (06) :512-523
[4]   A Tutorial Review of Functional Connectivity Analysis Methods and Their Interpretational Pitfalls [J].
Bastos, Andre M. ;
Schoffelen, Jan-Mathijs .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2016, 9
[5]  
Pascual-Marqui RD, 2007, Arxiv, DOI [arXiv:0711.1455, DOI 10.48550/ARXIV.0711.1455]
[6]  
Pascual-Marqui RD, 2007, Arxiv, DOI arXiv:0710.3341
[7]   Testing Graph Robustness Indexes for EEG Analysis in Alzheimer's Disease Diagnosis [J].
Dattola, Serena ;
Mammone, Nadia ;
Morabito, Francesco Carlo ;
Rosaci, Domenico ;
Sarne, Giuseppe Maria Luigi ;
La Foresta, Fabio .
ELECTRONICS, 2021, 10 (12)
[8]   Estimating Graph Robustness Through the Randic Index [J].
De Meo, Pasquale ;
Messina, Fabrizio ;
Rosaci, Domenico ;
Sarne, Giuseppe M. L. ;
Vasilakos, Athanasios V. .
IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (11) :3232-3242
[9]   Spatial spectra of scalp EEG and EMG from awake humans [J].
Freeman, WJ ;
Holmes, MD ;
Burke, BC ;
Vanhatalo, S .
CLINICAL NEUROPHYSIOLOGY, 2003, 114 (06) :1053-1068
[10]   Decreased EEG synchronization in Alzheimer's disease and mild cognitive impairment [J].
Koenig, T ;
Prichep, L ;
Dierks, T ;
Hubl, D ;
Wahlund, LO ;
John, ER ;
Jelic, V .
NEUROBIOLOGY OF AGING, 2005, 26 (02) :165-171