Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions

被引:45
作者
Zhang, ZH [1 ]
机构
[1] Fudan Univ, Inst Math, Shanghai 200433, Peoples R China
关键词
phase-field equations; Lojasiewicz-Simon type inequality; gradient system;
D O I
10.3934/cpaa.2005.4.683
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the asymptotic behavior of solutions to the phase-field equations subject to the Neumann boundary conditions where a Lojasiewicz-Simon type inequality plays an important role. In this paper, convergence of the solution of this problem to an equilibrium, as time goes to infinity, is proved.
引用
收藏
页码:683 / 693
页数:11
相关论文
共 18 条
[1]   Long-time convergence of solutions to a phase-field system [J].
Aizicovici, S ;
Feireisl, E ;
Issard-Roch, F .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (05) :277-287
[2]   On the Lojasiewicz-Simon gradient inequality [J].
Chill, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 201 (02) :572-601
[3]  
ELLIOTT CM, 1990, INT S NUM M, V95, P46
[4]  
FEIREISEL E, 2004, DISCRETE CONT DYN S, V10, P230
[5]  
Henry D., 1981, GEOMETRIC THEORY SEM, DOI [10.1007/BFb0089647, DOI 10.1007/BFB0089647]
[6]   A simple unified approach to some convergence theorems of L. Simon [J].
Jendoubi, MA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 153 (01) :187-202
[7]   ON EXISTENCE AND IRREDUCIBILITY OF CERTAIN SERIES OF REPRESENTATIONS [J].
KOSTANT, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 75 (04) :627-&
[8]  
LOJASIEWICZ S, 1993, ANN I FOURIER, V43, P1575
[9]  
Lojasiewicz S., 1965, ENSEMBLE SEMIANALYTI
[10]  
Lojasiewicz Stanislaw., 1963, Coll. du CNRS, V117, P87