Learning Evasion Strategy in Pursuit-Evasion by Deep Q-network

被引:0
作者
Zhu, Jiagang [1 ,2 ]
Zou, Wei [1 ,3 ]
Zhu, Zheng [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] TianJin Intelligent Tech Inst CASIA Co Ltd, Tianjin, Peoples R China
来源
2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) | 2018年
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
GAME; GO;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an approach for learning the evasion strategy for the evader in pursuit-evasion against the pursuers with Deep Q-network (DQN). To give the immediate reward to the agent, we handcraft a reward function, which considers both the evader escaping from being surrounded by the pursuers and keeping distance from the pursuers. This is a combination of the artificial potential field method with deep reinforcement learning. Our learned evasion strategy is verified by a series of experiments in three different game scenarios. The training stability and the value function are analyzed respectively. The three learned agents are compared with a random agent and a repulsive agent. We show the effectiveness of our method.
引用
收藏
页码:67 / 72
页数:6
相关论文
共 28 条
[11]   A Decentralized Fuzzy Learning Algorithm for Pursuit-Evasion Differential Games with Superior Evaders [J].
Awheda, Mostafa D. ;
Schwartz, Howard M. .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2016, 83 (01) :35-53
[12]  
Barnes L, 2007, MED C CONTR AUTOMAT, P1794
[13]  
Camci E, 2016, IEEE INT FUZZY SYST, P618, DOI 10.1109/FUZZ-IEEE.2016.7737744
[14]   Search and pursuit-evasion in mobile robotics A survey [J].
Chung, Timothy H. ;
Hollinger, Geoffrey A. ;
Isler, Volkan .
AUTONOMOUS ROBOTS, 2011, 31 (04) :299-316
[15]  
Gupta Jayesh K., 2017, Autonomous Agents and Multiagent Systems, AAMAS 2017: Workshops, Best Papers. Revised Selected Papers: LNAI 10642, P66, DOI 10.1007/978-3-319-71682-4_5
[16]   Distributed formation control while preserving connectedness [J].
Ji, Meng ;
Egerstedt, Magnus .
PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, :5962-5967
[17]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[18]  
Lim SH, 2004, IEEE INT CONF ROBOT, P3962
[19]  
Mnih V, 2016, PR MACH LEARN RES, V48
[20]   Human-level control through deep reinforcement learning [J].
Mnih, Volodymyr ;
Kavukcuoglu, Koray ;
Silver, David ;
Rusu, Andrei A. ;
Veness, Joel ;
Bellemare, Marc G. ;
Graves, Alex ;
Riedmiller, Martin ;
Fidjeland, Andreas K. ;
Ostrovski, Georg ;
Petersen, Stig ;
Beattie, Charles ;
Sadik, Amir ;
Antonoglou, Ioannis ;
King, Helen ;
Kumaran, Dharshan ;
Wierstra, Daan ;
Legg, Shane ;
Hassabis, Demis .
NATURE, 2015, 518 (7540) :529-533