On multivariate Gaussian tails

被引:30
作者
Hashorva, E [1 ]
Hüsler, J [1 ]
机构
[1] Univ Bern, Dept Math Stat & Actuarial Sci, CH-3012 Bern, Switzerland
关键词
multivariate Mills ratio; Gaussian random sequences; tail asymptotics; quadratic programming;
D O I
10.1007/BF02517804
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {X-n, n greater than or equal to 1} be a sequence of standard Gaussian random vectors in IRd, d greater than or equal to 2. In this paper we derive lower and upper bounds for the tail probability P{X-n > t(n)} with t(n) is an element of IRd some threshold. We improve for instance bounds on Mills ratio obtained by Savage (1962, J. Res. Nat. Bur. Standards Sect. B, 66, 9396). Furthermore, we prove exact asymptotics under fairly general conditions on both X-n and t(n), as \\t(n)\\ --> infinity where the correlation matrix Sigma(n) of X-n may also depend on n.
引用
收藏
页码:507 / 522
页数:16
相关论文
共 19 条
[1]  
BARNDORFFNIELSE.OE, 1989, ASYMPTOTIC TECHNIQUE
[2]  
BISCHOFF W, 2000, ASYMPTOTICS EXTREMES
[3]  
BISCHOFF W, 2001, ASYMPTOTICALLY OPTIM
[4]   Identification of the parameters of a trivariate normal vector by the distribution of the minimum [J].
Elnaggar, M ;
Mukherjea, A .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 78 (1-2) :23-37
[5]  
FALK M, 1994, LAWS SMALL NUMBERS E, V23
[6]  
FANG KT, 1990, STAT INFERENCE ELLIP, P457
[7]  
GJACJAUSKAS E, 1973, LITOVSK MAT SB, V13, P83
[8]   Records from a multivariate normal sample [J].
Gnedin, AV .
STATISTICS & PROBABILITY LETTERS, 1998, 39 (01) :11-15
[9]   On asymptotics of multivariate integrals with applications to records [J].
Hashorva, E ;
Hüsler, J .
STOCHASTIC MODELS, 2002, 18 (01) :41-69
[10]   MAXIMA OF NORMAL RANDOM VECTORS - BETWEEN INDEPENDENCE AND COMPLETE DEPENDENCE [J].
HUSLER, J ;
REISS, RD .
STATISTICS & PROBABILITY LETTERS, 1989, 7 (04) :283-286