Convolutional Neural Networks for classifying skin lesions

被引:0
作者
Pai, Kiran [1 ]
Giridharan, Anandi [2 ]
机构
[1] IEEE Computat Intelligence Soc, Bengaluru, India
[2] Indian Inst Sci, Dept Elect Commun Engn, Bengaluru, India
来源
PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY | 2019年
关键词
Convolutional Neural Networks; Deep Learning; Computer Vision; VGG;
D O I
10.1109/tencon.2019.8929461
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The usage of Deep Learning has immensely increased in the present years. Convolutional Neural Networks, Recurrent Neural Networks, Generative Adversarial Networks, Variational Auto Encoders are among the prominent architectures in Deep Learning. Convolutional Neural Networks architecture has signified high accuracy and performance for image classification problems. On the other hand skin cancer if recognized or treated early is almost curable. The proposed model in the paper uses Convolutional Neural Networks to predict and classify seven different types of skin lesions. A website is developed for the real time usage of the model, which can predict the three most probable types of skin lesions for a given image. The observations and results are based on the experiment conducted using the MNIST:HAM10000 dataset which consists of 10000 labelled images.
引用
收藏
页码:1794 / 1796
页数:3
相关论文
共 50 条
[1]   Classifying Melanoma Skin Lesions Using Convolutional Spiking Neural Networks With Unsupervised STDP Learning Rule [J].
Zhou, Qian ;
Shi, Yan ;
Xu, Zhenghua ;
Qu, Ruowei ;
Xu, Guizhi .
IEEE ACCESS, 2020, 8 :101309-101319
[2]   Robustness of convolutional neural networks in recognition of pigmented skin lesions [J].
Maron, Roman C. ;
Haggenmueller, Sarah ;
von Kalle, Christof ;
Utikal, Jochen S. ;
Meier, Friedegund ;
Gellrich, Frank F. ;
Hauschild, Axel ;
French, Lars E. ;
Schlaak, Max ;
Ghoreschi, Kamran ;
Kutzner, Heinz ;
Heppt, Markus V. ;
Haferkamp, Sebastian ;
Sondermann, Wiebke ;
Schadendorf, Dirk ;
Schilling, Bastian ;
Hekler, Achim ;
Krieghoff-Henning, Eva ;
Kather, Jakob N. ;
Froehling, Stefan ;
Lipka, Daniel B. ;
Brinker, Titus J. .
EUROPEAN JOURNAL OF CANCER, 2021, 145 :81-91
[3]   Convolutional Neural Networks for Classifying Cervical Cancer Types Using Histological Images [J].
Li, Yi-xin ;
Chen, Feng ;
Shi, Jiao-jiao ;
Huang, Yu-li ;
Wang, Mei .
JOURNAL OF DIGITAL IMAGING, 2023, 36 (02) :441-449
[4]   Convolutional Neural Networks for Classifying Cervical Cancer Types Using Histological Images [J].
Yi-xin Li ;
Feng Chen ;
Jiao-jiao Shi ;
Yu-li Huang ;
Mei Wang .
Journal of Digital Imaging, 2023, 36 :441-449
[5]   Convolutional Neural Networks for Classifying Electronic Components in Industrial Applications [J].
Hozyn, Stanislaw .
ENERGIES, 2023, 16 (02)
[6]   Classifying Code Commits with Convolutional Neural Networks [J].
Meng, Na ;
Jiang, Zijian ;
Zhong, Hao .
2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
[7]   Convolutional Neural Networks with Data Augmentation for Classifying Speakers' Native Language [J].
Kereni, Gil ;
Deng, Jun ;
Pohjalainen, Jouni ;
Schuller, Bjoern .
17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, :2393-2397
[8]   CLASSIFYING INVASIVE ALIEN SPECIES IN THE PHILIPPINES USING CONVOLUTIONAL NEURAL NETWORKS [J].
Alino, Rey ;
Fernandez, Proceso ;
Diesmos, Arvin .
JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2023, :84-94
[9]   Deep Convolutional Neural Networks for Classifying GPR B-Scans [J].
Besaw, Lance E. ;
Stimac, Philip J. .
DETECTION AND SENSING OF MINES, EXPLOSIVE OBJECTS, AND OBSCURED TARGETS XX, 2015, 9454
[10]   Classifying Graphs of Elementary Mathematical Functions Using Convolutional Neural Networks [J].
Viana, Joaquim ;
Matos, Helder ;
Mota, Marcelle ;
Santos, Reginaldo .
INTELLIGENT SYSTEMS, BRACIS 2024, PT I, 2025, 15412 :270-280