TIME-CHANGED FRACTIONAL ORNSTEIN-UHLENBECK PROCESS

被引:9
作者
Ascione, Giacomo [1 ]
Mishura, Yuliya [2 ]
Pirozzi, Enrica [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz Renato Caccioppol, Via Cintia, I-80126 Naples, Italy
[2] Taras Shevchenko Natl Univ Kyiv, Dept Probabil Theory Stat & Actuarial Math, Volodymyrska 64, UA-01601 Kiev, Ukraine
关键词
subordinator; generalized Caputo derivative; fractional Brownian motion; time-changed process; generalized Fokker-Planck equation; REPRODUCE SPIKING STATISTICS; BROWNIAN-MOTION; PARAMETER-ESTIMATION; EQUATIONS; OPTION;
D O I
10.1515/fca-2020-0022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a time-changed fractional Ornstein-Uhlenbeck process by composing a fractional Ornstein-Uhlenbeck process with the inverse of a subordinator. Properties of the moments of such process are investigated and the existence of the density is shown. We also provide a generalized Fokker-Planck equation for the density of the process.
引用
收藏
页码:450 / 483
页数:34
相关论文
共 50 条
[31]   Volatility estimation in fractional Ornstein-Uhlenbeck models [J].
Bajja, Salwa ;
Es-Sebaiy, Khalifa ;
Viitasaari, Lauri .
STOCHASTIC MODELS, 2020, 36 (01) :94-111
[32]   The long time behavior of the fractional Ornstein-Uhlenbeck process with linear self-repelling drift [J].
Xia, Xiaoyu ;
Yan, Litan ;
Yang, Qing .
ACTA MATHEMATICA SCIENTIA, 2024, 44 (02) :671-685
[33]   Ergodicity and Drift Parameter Estimation for Infinite-Dimensional Fractional Ornstein-Uhlenbeck Process of the Second Kind [J].
Balde, Maoudo Faramba ;
Es-Sebaiy, Khalifa ;
Tudor, Ciprian A. .
APPLIED MATHEMATICS AND OPTIMIZATION, 2020, 81 (03) :785-814
[34]   Local time of an Ornstein-Uhlenbeck particle [J].
Kishore, G. ;
Kundu, Anupam .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (03)
[35]   On drift parameter estimation for reflected fractional Ornstein-Uhlenbeck processes [J].
Lee, Chihoon ;
Song, Jian .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2016, 88 (05) :751-778
[36]   Ergodicity and parameter estimates for infinite-dimensional fractional Ornstein-Uhlenbeck process [J].
Maslowski, Bohdan ;
Pospisil, Jan .
APPLIED MATHEMATICS AND OPTIMIZATION, 2008, 57 (03) :401-429
[37]   On Simulation of a Fractional Ornstein-Uhlenbeck Process of the Second Kind by the Circulant Embedding Method [J].
Morlanes, Jose Igor ;
Andreev, Andriy .
STOCHASTIC PROCESSES AND APPLICATIONS (SPAS2017), 2018, 271 :155-164
[38]   Pairs trading with fractional Ornstein-Uhlenbeck spread model [J].
Xiang, Yun ;
Zhao, Yonghong ;
Deng, Shijie .
APPLIED ECONOMICS, 2023, 55 (23) :2607-2623
[39]   Asymptotic theory for explosive fractional Ornstein-Uhlenbeck processes [J].
Jiang, Hui ;
Pan, Yajuan ;
Xiao, Weilin ;
Yang, Qingshan ;
Yu, Jun .
ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (02) :3931-3974
[40]   Using the Ornstein-Uhlenbeck Process for Random Exploration [J].
Nauta, Johannes ;
Khaluf, Yara ;
Simoens, Pieter .
PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON COMPLEXITY, FUTURE INFORMATION SYSTEMS AND RISK (COMPLEXIS), 2019, :59-66