TIME-CHANGED FRACTIONAL ORNSTEIN-UHLENBECK PROCESS

被引:9
作者
Ascione, Giacomo [1 ]
Mishura, Yuliya [2 ]
Pirozzi, Enrica [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz Renato Caccioppol, Via Cintia, I-80126 Naples, Italy
[2] Taras Shevchenko Natl Univ Kyiv, Dept Probabil Theory Stat & Actuarial Math, Volodymyrska 64, UA-01601 Kiev, Ukraine
关键词
subordinator; generalized Caputo derivative; fractional Brownian motion; time-changed process; generalized Fokker-Planck equation; REPRODUCE SPIKING STATISTICS; BROWNIAN-MOTION; PARAMETER-ESTIMATION; EQUATIONS; OPTION;
D O I
10.1515/fca-2020-0022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a time-changed fractional Ornstein-Uhlenbeck process by composing a fractional Ornstein-Uhlenbeck process with the inverse of a subordinator. Properties of the moments of such process are investigated and the existence of the density is shown. We also provide a generalized Fokker-Planck equation for the density of the process.
引用
收藏
页码:450 / 483
页数:34
相关论文
共 50 条
[21]   Drift parameter estimation for infinite-dimensional fractional Ornstein-Uhlenbeck process [J].
Maslowski, Bohdan ;
Tudor, Ciprian A. .
BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (07) :880-901
[22]   An Exponential Nonuniform Berry-Esseen Bound for the Fractional Ornstein-Uhlenbeck Process [J].
Jiang, Hui ;
Zhou, Jingying .
JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (02) :1037-1058
[23]   Minimum contrast estimator for fractional Ornstein-Uhlenbeck processes [J].
Xiao WeiLin ;
Zhang WeiGuo ;
Zhang XiLi .
SCIENCE CHINA-MATHEMATICS, 2012, 55 (07) :1497-1511
[24]   Parameter identification for the Hermite Ornstein-Uhlenbeck process [J].
Assaad, Obayda ;
Tudor, Ciprian A. .
STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2020, 23 (02) :251-270
[25]   Hypothesis testing of the drift parameter sign for fractional Ornstein-Uhlenbeck process [J].
Kukush, Alexander ;
Mishura, Yuliya ;
Ralchenko, Kostiantyn .
ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (01) :385-400
[26]   Maximal inequalities for the Ornstein-Uhlenbeck process [J].
Graversen, SE ;
Peskir, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (10) :3035-3041
[27]   Ornstein-Uhlenbeck process with fluctuating damping [J].
Eab, Chai Hok ;
Lim, S. C. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 492 :790-803
[28]   Random broken lines that weakly converge to a fractional Ornstein-Uhlenbeck process [J].
Liber A.V. ;
Rusakov O.V. .
Journal of Mathematical Sciences, 2005, 128 (1) :2569-2577
[29]   Fractional Ornstein-Uhlenbeck Levy processes and the Telecom process: Upstairs and downstairs [J].
Wolpert, RL ;
Taqqu, MS .
SIGNAL PROCESSING, 2005, 85 (08) :1523-1545
[30]   The long time behavior of the fractional Ornstein-Uhlenbeck process with linear self-repelling drift [J].
Xiaoyu Xia ;
Litan Yan ;
Qing Yang .
Acta Mathematica Scientia, 2024, 44 :671-685