TIME-CHANGED FRACTIONAL ORNSTEIN-UHLENBECK PROCESS

被引:9
|
作者
Ascione, Giacomo [1 ]
Mishura, Yuliya [2 ]
Pirozzi, Enrica [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz Renato Caccioppol, Via Cintia, I-80126 Naples, Italy
[2] Taras Shevchenko Natl Univ Kyiv, Dept Probabil Theory Stat & Actuarial Math, Volodymyrska 64, UA-01601 Kiev, Ukraine
关键词
subordinator; generalized Caputo derivative; fractional Brownian motion; time-changed process; generalized Fokker-Planck equation; REPRODUCE SPIKING STATISTICS; BROWNIAN-MOTION; PARAMETER-ESTIMATION; EQUATIONS; OPTION;
D O I
10.1515/fca-2020-0022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a time-changed fractional Ornstein-Uhlenbeck process by composing a fractional Ornstein-Uhlenbeck process with the inverse of a subordinator. Properties of the moments of such process are investigated and the existence of the density is shown. We also provide a generalized Fokker-Planck equation for the density of the process.
引用
收藏
页码:450 / 483
页数:34
相关论文
共 50 条
  • [1] Time-changed fractional Ornstein-Uhlenbeck process
    Giacomo Ascione
    Yuliya Mishura
    Enrica Pirozzi
    Fractional Calculus and Applied Analysis, 2020, 23 : 450 - 483
  • [2] Time-changed Ornstein-Uhlenbeck process
    Gajda, Janusz
    Wylomanska, Agnieszka
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (13)
  • [3] CONVERGENCE RESULTS FOR THE TIME-CHANGED FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES
    Ascione, G.
    Mishura, Yu
    Pirozzi, E.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2021, 104 : 23 - 47
  • [4] The Fokker-Planck equation for the time-changed fractional Ornstein-Uhlenbeck stochastic process
    Ascione, Giacomo
    Mishura, Yuliya
    Pirozzi, Enrica
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (04) : 1032 - 1057
  • [5] TIME-CHANGED ORNSTEIN-UHLENBECK PROCESSES AND THEIR APPLICATIONS IN COMMODITY DERIVATIVE MODELS
    Li, Lingfei
    Linetsky, Vadim
    MATHEMATICAL FINANCE, 2014, 24 (02) : 289 - 330
  • [6] The Local Time of the Fractional Ornstein-Uhlenbeck Process
    Shen, Guangjun
    Zhu, Dongjin
    Ren, Yong
    Ding, Xueping
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [7] Some properties of the fractional Ornstein-Uhlenbeck process
    Yan, Litan
    Lu, Yunsheng
    Xu, Zhiqiang
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (14)
  • [8] On the local times of fractional Ornstein-Uhlenbeck process
    Yan, LT
    Tian, M
    LETTERS IN MATHEMATICAL PHYSICS, 2005, 73 (03) : 209 - 220
  • [9] On parameter estimation of fractional Ornstein-Uhlenbeck process
    Farah, Fatima-Ezzahra
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2022, 30 (03) : 161 - 170
  • [10] Fractional Ornstein-Uhlenbeck noise
    Fa, Kwok Sau
    ANNALS OF PHYSICS, 2018, 393 : 327 - 334