Oxygen Evolution Reaction on Nitrogen-Doped Defective Carbon Nanotubes and Graphene

被引:77
作者
Murdachaew, Garold [1 ]
Laasonen, Kari [1 ]
机构
[1] Aalto Univ, Dept Chem & Mat Sci, POB 16100, FI-00076 Aalto, Finland
基金
芬兰科学院;
关键词
METAL-FREE CATALYSTS; BIFUNCTIONAL ELECTROCATALYSTS; REDUCTION REACTION; MANGANESE OXIDE; WATER; NANOPARTICLES; GOLD; ELECTROCHEMISTRY; PSEUDOPOTENTIALS; DISSOCIATION;
D O I
10.1021/acs.jpcc.8b08519
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The realization of a hydrogen economy would be facilitated by the discovery of a water-splitting electrocatalyst that is efficient, stable under operating conditions, and composed of earth-abundant elements. Density functional theory simulations within a simple thermodynamic model of the more difficult half-reaction, the anodic oxygen evolution reaction (OER), with a single-walled carbon nanotube as a model catalyst, show that the presence of 0.3-1% nitrogen reduces the required OER overpotential significantly compared to the pristine nanotube. We performed an extensive exploration of systems and active sites with various nitrogen functionalities (graphitic, pyridinic, or pyrrolic) obtained by introducing nitrogen and simple lattice defects (atomic substitutions, vacancies, or Stone-Wales rotations). A number of nitrogen functionalities (graphitic, oxidized pyridinic, and Stone-Wales pyrrolic nitrogen systems) yielded similar low overpotentials near the top of the OER volcano predicted by the scaling relation, which was seen to be closely observed by these systems. The OER mechanism considered was the four-step single-site water nucleophilic attack mechanism. In the active systems, the second or third step, the formation of attached oxo or peroxo moieties, was the potential-determining step of the reaction. The nanotube radius and chirality effects were examined by considering OER in the limit of large radius by studying the analogous graphene-based model systems. They exhibited trends similar to those of the nanotube-based systems but often with reduced reactivity due to weaker attachment of the OER intermediate moieties.
引用
收藏
页码:25882 / 25892
页数:11
相关论文
共 50 条
  • [41] A high-performance mesoporous carbon supported nitrogen-doped carbon electrocatalyst for oxygen reduction reaction
    Xu, Jingjing
    Lu, Shiyao
    Chen, Xu
    Wang, Jianan
    Zhang, Bo
    Zhang, Xinyu
    Xiao, Chunhui
    Ding, Shujiang
    NANOTECHNOLOGY, 2017, 28 (48)
  • [42] An advanced hollow bimetallic carbide/nitrogen-doped carbon nanotube for efficient catalysis of oxygen reduction and hydrogen evolution and oxygen evolution reaction
    Feng, Xiaogeng
    Bo, Xiangjie
    Guo, Liping
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 575 : 69 - 77
  • [43] Ultrafine CoRu alloy nanoclusters densely anchored on Nitrogen-Doped graphene nanotubes for a highly efficient hydrogen evolution reaction
    Xia, Yanjie
    Li, Zhao-Qiang
    Sun, Haibin
    Zhang, Chao
    Fujita, Takeshi
    Cai, Ze-Xing
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 662 : 995 - 1004
  • [44] In situ construction of nitrogen-doped graphene with surface-grown carbon nanotubes as a multifactorial synergistic catalyst for oxygen reduction
    Song, Ailing
    Cao, Lei
    Yang, Wang
    Yang, Wu
    Wang, Lixin
    Ma, Zhipeng
    Shao, Guangjie
    CARBON, 2019, 142 : 40 - 50
  • [45] Influence of the reaction temperature on the oxygen reduction reaction on nitrogen-doped carbon nanotube catalysts
    Lai Truong-Phuoc
    Cuong Duong-Viet
    Doh, Won-Hui
    Bonnefont, Antoine
    Janowska, Izabela
    Begin, Dominique
    Savinova, Elena R.
    Granger, Pascal
    Cuong Pham-Huu
    CATALYSIS TODAY, 2015, 249 : 236 - 243
  • [46] Synergistic effect of Nitrogen-doped hierarchical porous carbon/graphene with enhanced catalytic performance for oxygen reduction reaction
    Kong, Dewang
    Yuan, Wenjing
    Li, Cun
    Song, Jiming
    Xie, Anjian
    Shen, Yuhua
    APPLIED SURFACE SCIENCE, 2017, 393 : 144 - 150
  • [47] FeNi nanoparticles embedded porous nitrogen-doped nanocarbon as efficient electrocatalyst for oxygen evolution reaction
    Zhang, Xiaojuan
    Chen, Yuanfu
    Wang, Bin
    Chen, Minglong
    Yu, Bo
    Wang, Xinqiang
    Zhang, Wanli
    Yang, Dongxu
    ELECTROCHIMICA ACTA, 2019, 321
  • [48] Graphdiyne and Nitrogen-Doped Graphdiyne Nanotubes as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction
    Liu, Tongchang
    Hao, Xinmeng
    Liu, Jiaqi
    Zhang, Pengfei
    Chang, Jiaming
    Shang, Hong
    Liu, Xuanhe
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (23)
  • [49] Nitrogen-Doped Nickel Selenium Nanosheets for Highly Efficient Oxygen Evolution Reaction
    Cai, Chen
    Gao, Cunyuan
    Lin, Shuai
    Cai, Bin
    CATALYSTS, 2023, 13 (10)
  • [50] Nitrogen-doped carbon derived from horse manure biomass as a catalyst for the oxygen reduction reaction
    Panomsuwan, Gasidit
    Hussakan, Chadapat
    Kaewtrakulchai, Napat
    Techapiesancharoenkij, Ratchatee
    Serizawa, Ai
    Ishizaki, Takahiro
    Eiad-ua, Apiluck
    RSC ADVANCES, 2022, 12 (27) : 17481 - 17489