Oxygen Evolution Reaction on Nitrogen-Doped Defective Carbon Nanotubes and Graphene

被引:77
作者
Murdachaew, Garold [1 ]
Laasonen, Kari [1 ]
机构
[1] Aalto Univ, Dept Chem & Mat Sci, POB 16100, FI-00076 Aalto, Finland
基金
芬兰科学院;
关键词
METAL-FREE CATALYSTS; BIFUNCTIONAL ELECTROCATALYSTS; REDUCTION REACTION; MANGANESE OXIDE; WATER; NANOPARTICLES; GOLD; ELECTROCHEMISTRY; PSEUDOPOTENTIALS; DISSOCIATION;
D O I
10.1021/acs.jpcc.8b08519
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The realization of a hydrogen economy would be facilitated by the discovery of a water-splitting electrocatalyst that is efficient, stable under operating conditions, and composed of earth-abundant elements. Density functional theory simulations within a simple thermodynamic model of the more difficult half-reaction, the anodic oxygen evolution reaction (OER), with a single-walled carbon nanotube as a model catalyst, show that the presence of 0.3-1% nitrogen reduces the required OER overpotential significantly compared to the pristine nanotube. We performed an extensive exploration of systems and active sites with various nitrogen functionalities (graphitic, pyridinic, or pyrrolic) obtained by introducing nitrogen and simple lattice defects (atomic substitutions, vacancies, or Stone-Wales rotations). A number of nitrogen functionalities (graphitic, oxidized pyridinic, and Stone-Wales pyrrolic nitrogen systems) yielded similar low overpotentials near the top of the OER volcano predicted by the scaling relation, which was seen to be closely observed by these systems. The OER mechanism considered was the four-step single-site water nucleophilic attack mechanism. In the active systems, the second or third step, the formation of attached oxo or peroxo moieties, was the potential-determining step of the reaction. The nanotube radius and chirality effects were examined by considering OER in the limit of large radius by studying the analogous graphene-based model systems. They exhibited trends similar to those of the nanotube-based systems but often with reduced reactivity due to weaker attachment of the OER intermediate moieties.
引用
收藏
页码:25882 / 25892
页数:11
相关论文
共 50 条
  • [21] Activation and Stabilization of Nitrogen-Doped Carbon Nanotubes as Electrocatalysts in the Oxygen Reduction Reaction at Strongly Alkaline Conditions
    Zhao, Anqi
    Masa, Justus
    Schuhmann, Wolfgang
    Xia, Wei
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (46) : 24283 - 24291
  • [22] Preparation of Nickel-Decorated and Nitrogen-Doped Carbon Nanotubes for Highly Efficient Hydrogen Evolution Reaction by Hydrothermal Method
    Qan, Yingjiang
    Huang, Shaofeng
    Li, Dongxu
    ENERGY & FUELS, 2020, 34 (08) : 10241 - 10246
  • [23] Metal-free porous nitrogen-doped carbon nanotubes for enhanced oxygen reduction and evolution reactions
    Pan, Ting
    Liu, Hongying
    Ren, Guangyuan
    Li, Yunan
    Lu, Xianyong
    Zhu, Ying
    SCIENCE BULLETIN, 2016, 61 (11) : 889 - 896
  • [24] Preparation and electrochemical properties of nitrogen-doped graphene/ carbon nanotubes/amorphous carbon composites
    Zhang Y.
    Wang M.
    Zhao J.
    Feng Y.
    Mi J.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2022, 41 (10): : 5501 - 5509
  • [25] Nitrogen-Doped Carbon Nanotube and Graphene Materials for Oxygen Reduction Reactions
    Wei, Qiliang
    Tong, Xin
    Zhang, Gaixia
    Qiao, Jinli
    Gong, Qiaojuan
    Sun, Shuhui
    CATALYSTS, 2015, 5 (03) : 1574 - 1602
  • [26] Secondary Impact of Manganese on the Catalytic Properties of Nitrogen-Doped Graphene in the Hydrogen Evolution Reaction
    Bayati, Maryam
    Scott, Keith
    CHEMCATCHEM, 2017, 9 (21) : 4049 - 4052
  • [27] An efficient and stable Ni-Fe selenides/nitrogen-doped carbon nanotubes in situ-derived electrocatalyst for oxygen evolution reaction
    Feng, Yafei
    Wang, Saijun
    Wang, Haiyan
    Zhong, Yijun
    Hu, Yong
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (28) : 13927 - 13937
  • [28] General design of self-supported Co-Ni/nitrogen-doped carbon nanotubes array for efficient oxygen evolution reaction
    Mou, Mengfei
    Wang, Yameng
    Yu, Wenjie
    Jiang, Huimin
    Zhang, Shuo
    Zhao, Yanchao
    Ma, Jingyun
    Yan, Liting
    Kong, Xiangjun
    Zhao, Xuebo
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 685 : 988 - 997
  • [29] A nitrogen-doped ordered mesoporous carbon/graphene framework as bifunctional electrocatalyst for oxygen reduction and evolution reactions
    Zhang, Changlin
    Wang, Biwei
    Shen, Xiaochen
    Liu, Jiawei
    Kong, Xiangkai
    Chuang, Steven S. C.
    Yang, Dong
    Dong, Angang
    Peng, Zhenmeng
    NANO ENERGY, 2016, 30 : 503 - 510
  • [30] FeCo nanoalloys embedded in nitrogen-doped carbon nanosheets/bamboo-like carbon nanotubes for the oxygen reduction reaction
    Song, Xiao-Wei
    Zhang, Shuwei
    Zhong, Haihong
    Gao, Yuan
    Estudillo-Wong, Luis A.
    Alonso-Vante, Nicolas
    Shu, Xin
    Feng, Yongjun
    INORGANIC CHEMISTRY FRONTIERS, 2021, 8 (01) : 109 - 121