Oxygen Evolution Reaction on Nitrogen-Doped Defective Carbon Nanotubes and Graphene

被引:77
|
作者
Murdachaew, Garold [1 ]
Laasonen, Kari [1 ]
机构
[1] Aalto Univ, Dept Chem & Mat Sci, POB 16100, FI-00076 Aalto, Finland
基金
芬兰科学院;
关键词
METAL-FREE CATALYSTS; BIFUNCTIONAL ELECTROCATALYSTS; REDUCTION REACTION; MANGANESE OXIDE; WATER; NANOPARTICLES; GOLD; ELECTROCHEMISTRY; PSEUDOPOTENTIALS; DISSOCIATION;
D O I
10.1021/acs.jpcc.8b08519
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The realization of a hydrogen economy would be facilitated by the discovery of a water-splitting electrocatalyst that is efficient, stable under operating conditions, and composed of earth-abundant elements. Density functional theory simulations within a simple thermodynamic model of the more difficult half-reaction, the anodic oxygen evolution reaction (OER), with a single-walled carbon nanotube as a model catalyst, show that the presence of 0.3-1% nitrogen reduces the required OER overpotential significantly compared to the pristine nanotube. We performed an extensive exploration of systems and active sites with various nitrogen functionalities (graphitic, pyridinic, or pyrrolic) obtained by introducing nitrogen and simple lattice defects (atomic substitutions, vacancies, or Stone-Wales rotations). A number of nitrogen functionalities (graphitic, oxidized pyridinic, and Stone-Wales pyrrolic nitrogen systems) yielded similar low overpotentials near the top of the OER volcano predicted by the scaling relation, which was seen to be closely observed by these systems. The OER mechanism considered was the four-step single-site water nucleophilic attack mechanism. In the active systems, the second or third step, the formation of attached oxo or peroxo moieties, was the potential-determining step of the reaction. The nanotube radius and chirality effects were examined by considering OER in the limit of large radius by studying the analogous graphene-based model systems. They exhibited trends similar to those of the nanotube-based systems but often with reduced reactivity due to weaker attachment of the OER intermediate moieties.
引用
收藏
页码:25882 / 25892
页数:11
相关论文
共 50 条
  • [1] Nitrogen-doped carbon nanotubes as catalysts for oxygen reduction reaction
    Xiong, Chun
    Wei, Zidong
    Hu, Baoshan
    Chen, Siguo
    Li, Li
    Guo, Lin
    Ding, Wei
    Liu, Xiao
    Ji, Weijia
    Wang, Xiaopei
    JOURNAL OF POWER SOURCES, 2012, 215 : 216 - 220
  • [2] CoOx electro-catalysts anchored on nitrogen-doped carbon nanotubes for the oxygen evolution reaction
    Singh, Santosh K.
    Takeyasu, Kotaro
    Paul, Bappi
    Sharma, Sachin K.
    Nakamura, Junji
    SUSTAINABLE ENERGY & FUELS, 2021, 5 (03) : 820 - 827
  • [3] Homogenous Core-Shell Nitrogen-Doped Carbon Nanotubes for the Oxygen Reduction Reaction
    Liu, Jiehua
    Shen, Anli
    Wei, Xiangfeng
    Wang, Shuangyin
    Zhou, Kuan
    Xu, Jiaqi
    CHEMELECTROCHEM, 2015, 2 (12): : 1892 - 1896
  • [4] Supramolecular Nanofiber Templated Metal-embedded Nitrogen-doped Carbon Nanotubes for Efficient Electrocatalysis of Oxygen Evolution Reaction
    Wu, Jin
    Zhao, Tao
    Zhang, Rui
    Xu, Rongkuan
    Gao, Junkuo
    Yao, Juming
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2018, 644 (23): : 1660 - 1666
  • [5] Synergistically enhanced activity of nitrogen-doped carbon dots/graphene composites for oxygen reduction reaction
    Liu, Hui
    Zhao, Qingshan
    Liu, Jingyan
    Ma, Xiao
    Rao, Yuan
    Shao, Xiaodong
    Li, Zhongtao
    Wu, Wenting
    Ning, Hui
    Wu, Mingbo
    APPLIED SURFACE SCIENCE, 2017, 423 : 909 - 916
  • [6] Facile synthesis of nitrogen-doped carbon nanotubes encapsulating nickel cobalt alloys 3D networks for oxygen evolution reaction in an alkaline solution
    Yu, Jie
    Zhong, Yijun
    Zhou, Wei
    Shao, Zongping
    JOURNAL OF POWER SOURCES, 2017, 338 : 26 - 33
  • [7] Investigating the active sites in molybdenum anchored nitrogen-doped carbon for alkaline oxygen evolution reaction
    Wang, Yuan
    Dong, Rui
    Tan, Pengfei
    Liu, Hongqin
    Liao, Hanxiao
    Jiang, Min
    Liu, Yong
    Yang, Lu
    Pan, Jun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 609 : 617 - 626
  • [8] Ruthenium Supported on Nitrogen-Doped Carbon Nanotubes for the Oxygen Reduction Reaction in Alkaline Media
    Mabena, L. F.
    Modibedi, R. M.
    Ray, S. Sinha
    Coville, N. J.
    FUEL CELLS, 2012, 12 (05) : 862 - 868
  • [9] Bamboo-like nitrogen-doped carbon nanotubes encapsulated with NiFeP nanoparticles and their efficient catalysis in the oxygen evolution reaction
    Yang, Beibei
    Bin, Duan
    Tamirat, Andebet Gedamu
    Liu, Yun
    Liu, Lifeng
    Liu, Baohong
    ELECTROCHIMICA ACTA, 2020, 331
  • [10] Thermodynamics of the Oxygen Reduction Reaction on Surfaces of Nitrogen-Doped Graphene
    Kislenko, V. A.
    Pavlov, S. V.
    Kislenko, S. A.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2023, 97 (11) : 2354 - 2361