Oxygen Evolution Reaction on Nitrogen-Doped Defective Carbon Nanotubes and Graphene

被引:77
|
作者
Murdachaew, Garold [1 ]
Laasonen, Kari [1 ]
机构
[1] Aalto Univ, Dept Chem & Mat Sci, POB 16100, FI-00076 Aalto, Finland
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2018年 / 122卷 / 45期
基金
芬兰科学院;
关键词
METAL-FREE CATALYSTS; BIFUNCTIONAL ELECTROCATALYSTS; REDUCTION REACTION; MANGANESE OXIDE; WATER; NANOPARTICLES; GOLD; ELECTROCHEMISTRY; PSEUDOPOTENTIALS; DISSOCIATION;
D O I
10.1021/acs.jpcc.8b08519
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The realization of a hydrogen economy would be facilitated by the discovery of a water-splitting electrocatalyst that is efficient, stable under operating conditions, and composed of earth-abundant elements. Density functional theory simulations within a simple thermodynamic model of the more difficult half-reaction, the anodic oxygen evolution reaction (OER), with a single-walled carbon nanotube as a model catalyst, show that the presence of 0.3-1% nitrogen reduces the required OER overpotential significantly compared to the pristine nanotube. We performed an extensive exploration of systems and active sites with various nitrogen functionalities (graphitic, pyridinic, or pyrrolic) obtained by introducing nitrogen and simple lattice defects (atomic substitutions, vacancies, or Stone-Wales rotations). A number of nitrogen functionalities (graphitic, oxidized pyridinic, and Stone-Wales pyrrolic nitrogen systems) yielded similar low overpotentials near the top of the OER volcano predicted by the scaling relation, which was seen to be closely observed by these systems. The OER mechanism considered was the four-step single-site water nucleophilic attack mechanism. In the active systems, the second or third step, the formation of attached oxo or peroxo moieties, was the potential-determining step of the reaction. The nanotube radius and chirality effects were examined by considering OER in the limit of large radius by studying the analogous graphene-based model systems. They exhibited trends similar to those of the nanotube-based systems but often with reduced reactivity due to weaker attachment of the OER intermediate moieties.
引用
收藏
页码:25882 / 25892
页数:11
相关论文
共 50 条
  • [1] Oxygen Evolution Reaction Kinetic Barriers on Nitrogen-Doped Carbon Nanotubes
    Partanen, Lauri
    Murdachaew, Garold
    Laasonen, Kari
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (24): : 12892 - 12899
  • [2] Nitrogen-doped carbon nanotubes as catalysts for oxygen reduction reaction
    Xiong, Chun
    Wei, Zidong
    Hu, Baoshan
    Chen, Siguo
    Li, Li
    Guo, Lin
    Ding, Wei
    Liu, Xiao
    Ji, Weijia
    Wang, Xiaopei
    JOURNAL OF POWER SOURCES, 2012, 215 : 216 - 220
  • [3] CoOx electro-catalysts anchored on nitrogen-doped carbon nanotubes for the oxygen evolution reaction
    Singh, Santosh K.
    Takeyasu, Kotaro
    Paul, Bappi
    Sharma, Sachin K.
    Nakamura, Junji
    SUSTAINABLE ENERGY & FUELS, 2021, 5 (03) : 820 - 827
  • [4] Mechanistic Discussion of the Oxygen Reduction Reaction at Nitrogen-Doped Carbon Nanotubes
    Wiggins-Camacho, Jaclyn D.
    Stevenson, Keith J.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (40): : 20002 - 20010
  • [5] Nitrogen-doped Carbon Nanotubes and Graphene Nanohybrid for Oxygen Reduction Reaction in Acidic, Alkaline and Neutral Solutions
    Liu, Ji-Yue
    Wang, Zan
    Chen, Jing-Yan
    Wang, Xin
    JOURNAL OF NANO RESEARCH, 2015, 30 : 50 - 58
  • [6] The Oxygen Reduction Reaction on Nitrogen-Doped Graphene
    Felix Studt
    Catalysis Letters, 2013, 143 : 58 - 60
  • [7] The Oxygen Reduction Reaction on Nitrogen-Doped Graphene
    Studt, Felix
    CATALYSIS LETTERS, 2013, 143 (01) : 58 - 60
  • [8] Isolated Co Atoms Anchored on Defective Nitrogen-doped Carbon Graphene as Efficient Oxygen Reduction Reaction Electrocatalysts
    Peng Rao
    Junming Luo
    Daoxiong Wu
    Jing Li
    Qi Chen
    Peilin Deng
    Yijun Shen
    Xinlong Tian
    Energy & Environmental Materials, 2023, 6 (03) : 243 - 248
  • [9] Isolated Co Atoms Anchored on Defective Nitrogen-doped Carbon Graphene as Efficient Oxygen Reduction Reaction Electrocatalysts
    Rao, Peng
    Luo, Junming
    Wu, Daoxiong
    Li, Jing
    Chen, Qi
    Deng, Peilin
    Shen, Yijun
    Tian, Xinlong
    ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (03)
  • [10] Boron- and nitrogen-doped carbon nanotubes and graphene
    Panchakarla, L. S.
    Govindaraj, A.
    Rao, C. N. R.
    INORGANICA CHIMICA ACTA, 2010, 363 (15) : 4163 - 4174