Iterative design of a high zT thermoelectric material

被引:8
作者
Adekoya, Adetoye H. [1 ]
Zhang, Yuhe [1 ]
Peters, Matthew [1 ]
Male, James [1 ]
Chart, Yvonne [1 ]
Dong, Jason [1 ]
Franks, Ryan [1 ]
Furlong, Alexander [1 ]
Guo, Binghao [1 ]
Agne, Matthias T. [1 ]
Olson, Gregory [1 ,2 ]
Snyder, G. Jeffrey [1 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[2] MIT, Dept Mat Sci & Engn, 32 Vassar St,Bldg 4-415, Cambridge, MA 02139 USA
关键词
THERMAL-CONDUCTIVITY; LATTICE; PERFORMANCE; SCATTERING; CONVERGENCE; BANDS;
D O I
10.1063/5.0069327
中图分类号
O59 [应用物理学];
学科分类号
摘要
Designing a high efficiency thermoelectric material for thermal to electric energy conversion means simultaneously optimizing multiple properties of the material. Although it might seem straightforward to maximize the electrical power and minimize thermal losses, the convoluted relationship between these properties makes optimization complex, requiring a more sophisticated algorithm. The Accelerated Insertion of Materials (AIM) methodology developed to engineer the mechanical properties of complex multiphase steel alloys provides a framework for optimization that can be applied to engineer the thermal and electrical transport properties of a multiphase thermoelectric material. The AIM methodology can be utilized in creating a high figure of merit (zT) material by considering the effects of each structural parameter, such as grain size and grain boundary properties, precipitate volume fraction, and doping and defect concentration of the matrix phase on the zT of the material using a variety of analytical models. The combination of these models provides a way to accelerate the design of high zT materials.
引用
收藏
页数:5
相关论文
共 51 条
[1]   Parallel Dislocation Networks and Cottrell Atmospheres Reduce Thermal Conductivity of PbTe Thermoelectrics [J].
Abdellaoui, Lamya ;
Chen, Zhiwei ;
Yu, Yuan ;
Luo, Ting ;
Hanus, Riley ;
Schwarz, Torsten ;
Villoro, Ruben Bueno ;
Cojocaru-Miredin, Oana ;
Snyder, Gerald Jeffrey ;
Raabe, Dierk ;
Pei, Yanzhong ;
Scheu, Christina ;
Zhang, Siyuan .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (20)
[2]   Minimum thermal conductivity in the context of diffuson-mediated thermal transport [J].
Agne, Matthias T. ;
Hanus, Riley ;
Snyder, G. Jeffrey .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (03) :609-616
[3]   THERMO-CALC & DICTRA, computational tools for materials science [J].
Andersson, JO ;
Helander, T ;
Höglund, LH ;
Shi, PF ;
Sundman, B .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2002, 26 (02) :273-312
[4]   Measurement of the electrical resistivity and Hall coefficient at high temperatures [J].
Borup, Kasper A. ;
Toberer, Eric S. ;
Zoltan, Leslie D. ;
Nakatsukasa, George ;
Errico, Michael ;
Fleurial, Jean-Pierre ;
Iversen, Bo B. ;
Snyder, G. Jeffrey .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (12)
[5]   MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES [J].
CALLAWAY, J .
PHYSICAL REVIEW, 1959, 113 (04) :1046-1051
[6]   THEORY OF THERMAL CONDUCTIVITY OF SOLIDS AT LOW TEMPERATURES [J].
CARRUTHERS, P .
REVIEWS OF MODERN PHYSICS, 1961, 33 (01) :92-138
[7]   SGTE DATA FOR PURE ELEMENTS [J].
DINSDALE, AT .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 1991, 15 (04) :317-425
[8]   Determining dilute-limit solvus boundaries in multi-component systems using defect energetics: Na in PbTe and PbS [J].
Doak, Jeff W. ;
Michel, Kyle Jay ;
Wolverton, C. .
JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (40) :10630-10649
[9]   A novel effective medium theory for modelling the thermal conductivity of porous materials [J].
Gong, Lunlun ;
Wang, Yonghong ;
Cheng, Xudong ;
Zhang, Ruifang ;
Zhang, Heping .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 68 :295-298
[10]   Thermal resistance at a twist boundary and a semicoherent heterointerface [J].
Gurunathan, Ramya ;
Hanus, Riley ;
Graham, Samuel ;
Garg, Anupam ;
Snyder, G. Jeffrey .
PHYSICAL REVIEW B, 2021, 103 (14)