Permutation polynomials of degree 6 or 7 over finite fields of characteristic 2

被引:25
作者
Li, Jiyou [2 ]
Chandler, David B. [1 ]
Xiang, Qing [1 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
[2] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
关键词
Finite field; Multinomial coefficient; Permutation polynomial; ELEMENTS;
D O I
10.1016/j.ffa.2010.07.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Dickson (1896-1897) [2], the author listed all permutation polynomials up to degree 5 over an arbitrary finite field, and all permutation polynomials of degree 6 over finite fields of odd characteristic. The classification of degree 6 permutation polynomials over finite fields of characteristic 2 was left incomplete. In this paper we complete the classification of permutation polynomials of degree 6 over finite fields of characteristic 2. In addition, all permutation polynomials of degree 7 over finite fields of characteristic 2 are classified. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:406 / 419
页数:14
相关论文
共 9 条
[1]  
Cohen S., 1995, Finite Fields Appl, V1, P372, DOI DOI 10.1006/FFTA.1995.1027
[2]  
Dickson LE, 1896, ANN MATH, V11, P65, DOI [DOI 10.2307/1967224, DOI 10.2307/1967217]
[3]   SCHUR COVERS AND CARLITZS CONJECTURE [J].
FRIED, MD ;
GURALNICK, R ;
SAXL, J .
ISRAEL JOURNAL OF MATHEMATICS, 1993, 82 (1-3) :157-225
[4]   WHEN DOES A POLYNOMIAL OVER A FINITE-FIELD PERMUTE THE ELEMENTS OF THE FIELD [J].
LIDL, R ;
MULLEN, GL .
AMERICAN MATHEMATICAL MONTHLY, 1988, 95 (03) :243-246
[5]   WHEN DOES A POLYNOMIAL OVER A FINITE-FIELD PERMUTE THE ELEMENTS OF THE FIELD .2. [J].
LIDL, R ;
MULLEN, GL .
AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (01) :71-74
[6]  
Lidl R., 1997, Finite Fields
[7]  
Mullen G.L., 1993, LECTURE NOTES PURE A, V141, P131
[8]  
Mullen G.L., 1995, FINITE FIELDS APPL, V1, P242
[9]  
WAN D, 1993, LECT NOTES PURE APPL, V141, P431