Stability analysis of a fractional-order two-species facultative mutualism model with harvesting

被引:14
作者
Supajaidee, Nattakan [1 ]
Moonchai, Sompop [2 ,3 ]
机构
[1] Chiang Mai Univ, Dept Math, Fac Sci, Chiang Mai 50200, Thailand
[2] Chiang Mai Univ, Ctr Excellence Math & Appl Math, Dept Math, Fac Sci, Chiang Mai 50200, Thailand
[3] CHE, Ctr Excellence Math, 328 Si Ayutthaya Rd, Bangkok, Thailand
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2017年
关键词
fractional differential equations; stability analysis; mutualism model; Caputo fractional derivative; Lyapunov function; GLOBAL ASYMPTOTIC STABILITY; LYAPUNOV FUNCTIONS; DIFFERENTIAL-EQUATIONS; NUMERICAL-SOLUTION; SYSTEM; EVOLUTION;
D O I
10.1186/s13662-017-1430-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a fractional-order model of two-species facultative mutualism with harvesting. We investigate the stability of the equilibrium points of the model by using the linearization method for noncoexistence of equilibrium points and the Lyapunov direct method for the positive coexistence of an equilibrium point. In addition, we obtain sufficient conditions to ensure the local asymptotic stability and global uniform asymptotic stability for the model. Finally, we provide illustrated numerical examples to verify the stability results obtained in this study.
引用
收藏
页数:13
相关论文
共 61 条
  • [1] Adomian G., 2013, Solving frontier problems of physics: The decomposition method, V60
  • [2] Lyapunov functions for fractional order systems
    Aguila-Camacho, Norelys
    Duarte-Mermoud, Manuel A.
    Gallegos, Javier A.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) : 2951 - 2957
  • [3] On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rossler, Chua and Chen systems
    Ahmed, E.
    El-Sayed, A. M. A.
    El-Saka, Hala A. A.
    [J]. PHYSICS LETTERS A, 2006, 358 (01) : 1 - 4
  • [4] Modeling some real phenomena by fractional differential equations
    Almeida, Ricardo
    Bastos, Nuno R. O.
    Monteiro, M. Teresa T.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (16) : 4846 - 4855
  • [5] [Anonymous], 2012, Fractional order motion controls, DOI DOI 10.1002/9781118387726
  • [6] [Anonymous], 2001, MATH MODELS POPULATI
  • [7] [Anonymous], 2008, GEOPHYS J INT
  • [8] On a fractional order Ebola epidemic model
    Area, Ivan
    Batarfi, Hanan
    Losada, Jorge
    Nieto, Juan J.
    Shammakh, Wafa
    Torres, Angela
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [9] Baleanu D, 2011, ROM J PHYS, V56, P636
  • [10] Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations
    Baleanu, Dumitru
    Wu, Guo-Cheng
    Zeng, Sheng-Da
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 102 : 99 - 105