Truncated pore network model for the methane and hydrogen adsorption in disordered nanoporous carbons

被引:9
|
作者
Ramirez Velez, Alejandro [1 ,2 ]
机构
[1] Univ Antioquia, Inst Quim, Grp Ciencia Mat, Medellin 1226, Colombia
[2] Univ Nacl Colombia Medellin, Escuela Quim, Grp Ciencia Mat Avanzados, Sede Medellin, Colombia
关键词
Adsorption; Nanoporous carbons; Pore network model; Storage; CANONICAL MONTE-CARLO; EQUILIBRIUM MOLECULAR-DYNAMICS; COMPUTER-SIMULATION; MICROPOROUS CARBONS; POROUS CARBONS; AMBIENT-TEMPERATURES; NITROGEN ADSORPTION; SIZE DISTRIBUTIONS; ACTIVATED CARBONS; MASS DIFFUSION;
D O I
10.1016/j.commatsci.2010.10.041
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A useful computational model is described for representing the nanoporous structure in real carbons. The model gathers geometric and topological (e.g. pore connectivity and deadend pores) characteristics and it is used to evaluate the effect that porosity (epsilon) and pore size (H) have on the adsorption behavior of methane and hydrogen (obtained by Grand Canonical Monte Carlo Simulation) quantified in terms of the excess density (rho) and the gravimetric storage capacity (wt.%). In general higher adsorptions are observed compared to the traditional pore models. An increase in porosity or pore size originates a decrease in rho. 3.1 wt.% is the maximum amount of H-2 stored in the material epsilon = 0.40, H = 4.89 sigma(ff) at 77 K. which is in reasonably good agreement with experimental data. This quantity is lower as the porosity decreases and the pore size increases. The results of this work support some experimental evidences that suggest a linear relation between the hydrogen stored in nanoporous carbons and specific surface area. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1016 / 1021
页数:6
相关论文
共 50 条
  • [1] Adsorption and diffusion of argon in disordered nanoporous carbons
    Palmer, Jeremy C.
    Moore, Joshua D.
    Brennan, John K.
    Gubbins, Keith E.
    ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2011, 17 (01): : 189 - 199
  • [2] Adsorption and diffusion of argon in disordered nanoporous carbons
    Jeremy C. Palmer
    Joshua D. Moore
    John K. Brennan
    Keith E. Gubbins
    Adsorption, 2011, 17 : 189 - 199
  • [3] Characterization of pore wall heterogeneity in nanoporous carbons using adsorption: the slit pore model revisited
    Nguyen, TX
    Bhatia, SK
    JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (37): : 14032 - 14042
  • [4] Hydrogen adsorption on functionalized nanoporous activated carbons
    Zhao, XB
    Xiao, B
    Fletcher, AJ
    Thomas, KM
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (18): : 8880 - 8888
  • [5] Argon and nitrogen adsorption in disordered nanoporous carbons: Simulation and experiment
    Pikunic, J
    Llewellyn, P
    Pellenq, R
    Gubbins, KE
    LANGMUIR, 2005, 21 (10) : 4431 - 4440
  • [6] A pore network model for diffusion in nanoporous carbons: Validation by molecular dynamics simulation
    Cai, Q.
    Buts, A.
    Seaton, N. A.
    Biggs, M. J.
    CHEMICAL ENGINEERING SCIENCE, 2008, 63 (13) : 3319 - 3327
  • [7] Kinetics of protein adsorption by nanoporous carbons with different pore size
    Alexander M. Puziy
    Olga I. Poddubnaya
    Anna Derylo-Marczewska
    Adam W. Marczewski
    Magdalena Blachnio
    Mykola M. Tsyba
    Vitaliy I. Sapsay
    Dmytro O. Klymchuk
    Adsorption, 2016, 22 : 541 - 552
  • [8] Probing the pore wall structure of nanoporous carbons using adsorption
    Nguyen, TX
    Bhatia, SK
    LANGMUIR, 2004, 20 (09) : 3532 - 3535
  • [9] Kinetics of protein adsorption by nanoporous carbons with different pore size
    Puziy, Alexander M.
    Poddubnaya, Olga I.
    Derylo-Marczewska, Anna
    Marczewski, Adam W.
    Blachnio, Magdalena
    Tsyba, Mykola M.
    Sapsay, Vitaliy I.
    Klymchuk, Dmytro O.
    ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2016, 22 (4-6): : 541 - 552
  • [10] Role of microporosity in hydrogen adsorption on templated nanoporous carbons
    Armandi, M.
    Bonelli, B.
    Arean, C. Otero
    Garrone, E.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2008, 112 (1-3) : 411 - 418