Particle approximation of a constrained model for traffic flow

被引:6
作者
Berthelin, Florent [1 ]
Goatin, Paola [2 ]
机构
[1] Univ Nice Sophia Antipolis, Univ Cote Azur, CNRS, LJAD,UMR 7351, Parc Valrose, F-06108 Nice 2, France
[2] Univ Cote Azur, CNRS, INRIA, Inria Sophia Antipolis Mediterranee,LJAD, 2004 Route Lucioles,BP 93, F-06902 Sophia Antipolis, France
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2017年 / 24卷 / 05期
关键词
Conservation laws with density constraint; Many-particle system; Traffic flow models; MICRO-MACRO LIMIT; EVOLUTION; JAMS;
D O I
10.1007/s00030-017-0480-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We rigorously prove the convergence of the micro-macro limit for particle approximations of the constrained pressureless gas dynamics system. The lack of BV bounds on the density variable is supplied by a compensated compactness argument.
引用
收藏
页数:16
相关论文
共 14 条
[1]   Resurrection of "second order" models of traffic flow [J].
Aw, A ;
Rascle, M .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (03) :916-938
[2]   Derivation of continuum traffic flow models from microscopic follow-the-leader models [J].
Aw, A ;
Klar, A ;
Materne, T ;
Rascle, M .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 63 (01) :259-278
[3]   A model for the formation and evolution of traffic jams [J].
Berthelin, F. ;
Degond, P. ;
Delitala, M. ;
Rascle, M. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2008, 187 (02) :185-220
[4]   Existence and weak stability for a pressureless model with unilateral constraint [J].
Berthelin, F .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2002, 12 (02) :249-272
[5]   A MODEL FOR THE EVOLUTION OF TRAFFIC JAMS IN MULTI-LANE [J].
Berthelin, Florent ;
Broizat, Damien .
KINETIC AND RELATED MODELS, 2012, 5 (04) :697-728
[6]   On the micro-macro limit in traffic flow [J].
Colombo, R. M. ;
Rossi, E. .
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2014, 131 :217-235
[7]   A 2-PHASE TRAFFIC MODEL BASED ON A SPEED BOUND [J].
Colombo, Rinaldo M. ;
Marcellini, Francesca ;
Rascle, Michel .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2010, 70 (07) :2652-2666
[8]   Rigorous Derivation of Nonlinear Scalar Conservation Laws from Follow-the-Leader Type Models via Many Particle Limit [J].
Di Francesco, M. ;
Rosini, M. D. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 217 (03) :831-871
[9]  
Di Francesco M., 2017, B UNIONE MAT ITAL
[10]   DETERMINISTIC PARTICLE APPROXIMATION OF THE HUGHES MODEL IN ONE SPACE DIMENSION [J].
Di Francesco, Marco ;
Fagioli, Simone ;
Rosini, Massimiliano Daniele ;
Russo, Giovanni .
KINETIC AND RELATED MODELS, 2017, 10 (01) :215-237