Kontsevich Deformation Quantization and Flat Connections

被引:14
作者
Alekseev, Anton [1 ]
Torossian, Charles [2 ]
机构
[1] Univ Geneva, Sect Math, CH-1211 Geneva 4, Switzerland
[2] Univ Paris 07, Inst Math Jussieu, CNRS, F-75005 Paris, France
基金
瑞士国家科学基金会;
关键词
KASHIWARA-VERGNE CONJECTURE; HAUSDORFF FORMULA;
D O I
10.1007/s00220-010-1106-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In Torossian (J Lie Theory 12(2): 597-616, 2002), the second author used the Kontsevich deformation quantization technique to define a natural connection omega(n) on the compactified configuration spaces (C) over bar (n), 0 of n points on the upper half-plane. Connections omega(n) take values in the Lie algebra of derivations of the free Lie algebra with n generators. In this paper, we show that omega(n) is flat. The configuration space (C) over bar (n),0 contains a boundary stratum at infinity which coincides with the (compactified) configuration space of n points on the complex plane. When restricted to this stratum, omega(n) gives rise to a flat connection omega(infinity)(n). We show that the parallel transport Phi defined by the connection. omega(infinity)(3) between configuration 1(23) and (12)3 verifies axioms of an associator. We conjecture that omega(infinity)(n) takes values in the Lie algebra t(n) of infinitesimal braids. If correct, this conjecture implies that Phi is an element of exp(t(3)) is a Drinfeld's associator. Furthermore, we prove Phi not equal Phi(KZ) showing that Phi is a new explicit solution of associator axioms.
引用
收藏
页码:47 / 64
页数:18
相关论文
共 14 条
[1]   On the Kashiwara-Vergne conjecture [J].
Alekseev, A ;
Meinrenken, E .
INVENTIONES MATHEMATICAE, 2006, 164 (03) :615-634
[2]  
ALEKSEEV A, 2008, KASHIWARA VERGNE CON
[3]   Convolution of invariant distributions: Proof of the Kashiwara-Vergne conjecture [J].
Andler, M ;
Sahi, S ;
Torossian, C .
LETTERS IN MATHEMATICAL PHYSICS, 2004, 69 (1) :177-203
[4]   Choice of signs for the Kontsevich formality [J].
Arnal, D ;
Manchon, D ;
Masmoudi, M .
PACIFIC JOURNAL OF MATHEMATICS, 2002, 203 (01) :23-66
[5]  
CATTANEO AS, 2005, COLLECTION PANORAMAS, V20
[6]   Kontsevich star product on the dual of a Lie algebra [J].
Dito, G .
LETTERS IN MATHEMATICAL PHYSICS, 1999, 48 (04) :307-322
[7]  
Drinfeld V., 1991, Leningrad Math. J., V2, P829
[8]  
FELDER G, 2008, IRRATIONALITY KONTSE
[9]   CAMPBELL-HAUSDORFF FORMULA AND INVARIANT HYPERFUNCTIONS [J].
KASHIWARA, M ;
VERGNE, M .
INVENTIONES MATHEMATICAE, 1978, 47 (03) :249-272
[10]   Kontsevich's universal formula for deformation quantization and the Campbell-Baker-Hausdorff formula [J].
Kathotia, V .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2000, 11 (04) :523-551