Alcohol induced gelation of TEMPO-oxidized cellulose nanofibril dispersions

被引:21
作者
da Silva, Marcelo A. [1 ]
Calabrese, Vincenzo [1 ]
Schmitt, Julien [1 ]
Celebi, Duygu [1 ,2 ]
Scott, Janet L. [1 ,2 ]
Edler, Karen J. [1 ]
机构
[1] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
[2] Univ Bath, Ctr Sustainable Chem Technol, Bath BA2 7AY, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
PREFERENTIAL SOLVATION; SURFACE MODIFICATION; SOLUTE-SOLVENT; MIXED-SOLVENTS; WATER; HYDROGELS; COLLOIDS; GELS; NANOCELLULOSES; AGGREGATION;
D O I
10.1039/c8sm01815d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solvent-induced physical hydrogels of TEMPO-oxidized cellulose nanofibrils (OCNFs) were obtained from aqueous/alcoholic dispersions of fibrils in lower alcohols, namely, methanol, ethanol, 1-propanol and 2-propanol. The sol-gel transition occurs above a critical alcohol concentration of ca. 30 wt% for all alcohols tested. The rheological properties of the hydrogels depend on the nature of the alcohol: for ethanol, 1-propanol and 2-propanol the magnitude of the shear storage modulus follows the alcohol hydrophilicity, whilst methanol produces the weakest gels in the group. Above a second critical concentration, ca. 60 wt% alcohol, phase separation is observed as the gels undergo syneresis. Analysis of small-angle X-ray scattering data shows that the OCNFs may be modelled as rigid rods. In the presence of lower alcohols, attractive interactions between nanofibrils are present and, above the alcohol concentration leading to gelation, an increase of the OCNF cross-section is observed, suggesting alcohol induced aggregation of nanofibrils.
引用
收藏
页码:9243 / 9249
页数:7
相关论文
共 48 条
[1]   Formation of hydrogels from cellulose nanofibers [J].
Abe, Kentaro ;
Yano, Hiroyuki .
CARBOHYDRATE POLYMERS, 2011, 85 (04) :733-737
[2]   Toward Semistructural Cellulose Nanocomposites: The Need for Scalable Processing and Interface Tailoring [J].
Ansari, Farhan ;
Berglund, Lars A. .
BIOMACROMOLECULES, 2018, 19 (07) :2341-2350
[3]   Principal properties (PPs) as solvent descriptors for multivariate optimization in organic synthesis:: specific PPs for ethers [J].
Ballistreri, FP ;
Fortuna, CG ;
Musumarra, G ;
Pavone, D ;
Scirè, S .
ARKIVOC, 2002, :54-64
[4]   Incorporating intermicellar interactions in the fitting of SANS data from cationic wormlike micelles [J].
Chen, Wei-Ren ;
Butler, Paul D. ;
Magid, Linda J. .
LANGMUIR, 2006, 22 (15) :6539-6548
[5]   Formation of shear thinning gels from partially oxidised cellulose nanofibrils [J].
Crawford, Robert J. ;
Edler, Karen J. ;
Lindhoud, Saskia ;
Scott, Janet L. ;
Unali, Gianfranco .
GREEN CHEMISTRY, 2012, 14 (02) :300-303
[6]   Lysozyme gelation in mixtures of tetramethylurea with protic solvents:: Use of solvatochromic indicators to probe medium microstructure and solute-solvent interactions [J].
da Silva, Marcelo A. ;
El Seoud, Omar A. ;
Areas, Elizabeth P. G. .
JOURNAL OF MOLECULAR STRUCTURE, 2007, 841 (1-3) :51-60
[7]   Cellulose-silica aerogels [J].
Demilecamps, Arnaud ;
Beauger, Christian ;
Hildenbrand, Claudia ;
Rigacci, Arnaud ;
Budtova, Tatiana .
CARBOHYDRATE POLYMERS, 2015, 122 :293-300
[8]   Molecular segregation observed in a concentrated alcohol-water solution [J].
Dixit, S ;
Crain, J ;
Poon, WCK ;
Finney, JL ;
Soper, AK .
NATURE, 2002, 416 (6883) :829-832
[9]   Cation-Induced Hydrogels of Cellulose Nanofibrils with Tunable Moduli [J].
Dong, Hong ;
Snyder, James F. ;
Williams, Kristen S. ;
Andzelm, Jan W. .
BIOMACROMOLECULES, 2013, 14 (09) :3338-3345
[10]   Review: current international research into cellulose nanofibres and nanocomposites [J].
Eichhorn, S. J. ;
Dufresne, A. ;
Aranguren, M. ;
Marcovich, N. E. ;
Capadona, J. R. ;
Rowan, S. J. ;
Weder, C. ;
Thielemans, W. ;
Roman, M. ;
Renneckar, S. ;
Gindl, W. ;
Veigel, S. ;
Keckes, J. ;
Yano, H. ;
Abe, K. ;
Nogi, M. ;
Nakagaito, A. N. ;
Mangalam, A. ;
Simonsen, J. ;
Benight, A. S. ;
Bismarck, A. ;
Berglund, L. A. ;
Peijs, T. .
JOURNAL OF MATERIALS SCIENCE, 2010, 45 (01) :1-33