Periodic and subharmonic solutions for a class of the second-order Hamiltonian systems with impulsive effects

被引:4
作者
Xie, Jingli [1 ]
Li, Jianli [2 ]
Luo, Zhiguo [2 ]
机构
[1] Jishou Univ, Coll Math & Stat, Jishou 416000, Hunan, Peoples R China
[2] Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R China
关键词
critical point theorem; impulsive differential equations; periodic solution; BOUNDARY-VALUE PROBLEM; DIFFERENTIAL-EQUATIONS; MULTIPLICITY; EXISTENCE;
D O I
10.1186/s13661-015-0313-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence of periodic and subharmonic solutions for a class of the second-order impulsive Hamiltonian systems. It employs the linking theorem.
引用
收藏
页数:10
相关论文
共 24 条
[1]   A multiplicity result for second order impulsive differential equations via the Leggett Williams fixed point theorem [J].
Agarwal, RP ;
O'Regan, D .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 161 (02) :433-439
[2]  
Avila A, 1994, DYNAM SYSTEMS APPL, V3, P519
[3]   Nonlinear boundary value problem of first order impulsive functional differential equations [J].
Chen, LJ ;
Sun, JT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 318 (02) :726-741
[4]   Minimal period estimates of periodic solutions for superquadratic Hamiltonian systems [J].
Fei, GH ;
Kim, SK ;
Wang, TX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 238 (01) :216-233
[5]  
Fei GH, 2002, ELECTRON J DIFFER EQ
[6]   Periodic and subharmonic solutions of a class of subquadratic second-order Hamiltonian systems [J].
Jiang, Qin ;
Tang, Chun-Lei .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (01) :380-389
[7]   Infinitely many homoclinic solutions for a nonperiodic fourth-order differential equation without (AR)-condition [J].
Li, Feng ;
Sun, Juntao ;
Lu, Gangfu ;
Lv, Chengjun .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 241 :36-41
[8]   On Homoclinic Solutions for First-Order Superquadratic Hamiltonian Systems with Spectrum Point Zero [J].
Li, Feng ;
Sun, Juntao .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[9]  
Mawhin J., 1989, Applied Mathematical Sciences
[10]   Variational approach to impulsive differential equations [J].
Nieto, Juan J. ;
O'Regan, Donal .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (02) :680-690