Magnetic islands and singular currents at rational surfaces in three-dimensional magnetohydrodynamic equilibria

被引:33
作者
Loizu, J. [1 ,2 ]
Hudson, S. [2 ]
Bhattacharjee, A. [2 ]
Helander, P. [1 ]
机构
[1] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany
[2] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
基金
美国国家科学基金会;
关键词
PRESSURE-INDUCED ISLANDS; PLASMA; STABILITY;
D O I
10.1063/1.4906888
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using the recently developed multiregion, relaxed MHD (MRxMHD) theory, which bridges the gap between Taylor's relaxation theory and ideal MHD, we provide a thorough analytical and numerical proof of the formation of singular currents at rational surfaces in non-axisymmetric ideal MHD equilibria. These include the force-free singular current density represented by a Dirac delta-function, which presumably prevents the formation of islands, and the Pfirsch-Schluter 1/x singular current, which arises as a result of finite pressure gradient. An analytical model based on linearized MRxMHD is derived that can accurately (1) describe the formation of magnetic islands at resonant rational surfaces, (2) retrieve the ideal MHD limit where magnetic islands are shielded, and (3) compute the subsequent formation of singular currents. The analytical results are benchmarked against numerical simulations carried out with a fully nonlinear implementation of MRxMHD. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:12
相关论文
共 30 条
[1]   Introduction to magnetic helicity [J].
Berger, MA .
PLASMA PHYSICS AND CONTROLLED FUSION, 1999, 41 :B167-B175
[2]   THEORY OF PRESSURE-INDUCED ISLANDS AND SELF-HEALING IN 3-DIMENSIONAL TOROIDAL MAGNETOHYDRODYNAMIC EQUILIBRIA [J].
BHATTACHARJEE, A ;
HAYASHI, T ;
HEGNA, CC ;
NAKAJIMA, N ;
SATO, T .
PHYSICS OF PLASMAS, 1995, 2 (03) :883-888
[3]   ENERGY PRINCIPLE WITH GLOBAL INVARIANTS [J].
BHATTACHARJEE, A ;
DEWAR, RL .
PHYSICS OF FLUIDS, 1982, 25 (05) :887-897
[4]   Current density and plasma displacement near perturbed rational surfaces [J].
Boozer, Allen H. ;
Pomphrey, Neil .
PHYSICS OF PLASMAS, 2010, 17 (11)
[5]   PRESSURE-INDUCED ISLANDS IN 3-DIMENSIONAL TOROIDAL PLASMA [J].
CARY, JR ;
KOTSCHENREUTHER, M .
PHYSICS OF FLUIDS, 1985, 28 (05) :1392-1401
[6]   Minimally Constrained Model of Self-Organized Helical States in Reversed-Field Pinches [J].
Dennis, G. R. ;
Hudson, S. R. ;
Terranova, D. ;
Franz, P. ;
Dewar, R. L. ;
Hole, M. J. .
PHYSICAL REVIEW LETTERS, 2013, 111 (05)
[7]   The infinite interface limit of multiple-region relaxed magnetohydrodynamics [J].
Dennis, G. R. ;
Hudson, S. R. ;
Dewar, R. L. ;
Hole, M. J. .
PHYSICS OF PLASMAS, 2013, 20 (03)
[8]   Plasmoid solutions of the Hahm-Kulsrud-Taylor equilibrium model [J].
Dewar, R. L. ;
Bhattacharjee, A. ;
Kulsrud, R. M. ;
Wright, A. M. .
PHYSICS OF PLASMAS, 2013, 20 (08)
[9]  
Garabedian PR, 1998, COMMUN PUR APPL MATH, V51, P1019, DOI 10.1002/(SICI)1097-0312(199809/10)51:9/10<1019::AID-CPA4>3.3.CO
[10]  
2-A